CSE 311 Foundations of Computing I

Lecture 26
Computability: Turing machines, Undecidability of the Halting Problem Spring 2013

Announcements

- Reading
- 7th edition: p. 201 and 13.5
-6th edition: p. 177 and 12.5
- Topic list and sample final exam problems have been posted
- Final exam, Monday, June 10
- 2:30-4:20 pm MGH 389.

Last lecture highlights

- Cardinality
- A set S is countable iff we can write it as $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots\right\}$ indexed by \mathbb{N}
- Set of rationals is countable - "dovetailing"
- Σ^{*} is countable

$-\{0,1\}^{*}=\{\lambda, 0,1,00,01,10,11,000,001,010,011,100,101, \ldots\}$
- Set of all (Java) programs is countable

Last lecture highlights

- The set of real numbers is not countable
- "diagonalization"

- Why doesn't this show that the rationals aren't countable?

Last lecture highlights

- There exist functions that cannot be computed by any program
- The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ is not countable
- The set of all (Java/C/C++) programs is countable
- So there are simply more functions than programs

Do we care?

- Are any of these functions, ones that we would actually want to compute?
- The argument does not even give any example of something that can't be done, it just says that such an example exists
- We haven't used much of anything about what computers (programs or people) can do
- Once we figure that out, we'll be able to show that some of these functions are really important

Before Java...more from our Brief History of Reasoning

- 1930's
- How can we formalize what algorithms are possible?
- Turing machines (Turing, Post)
- basis of modern computers
- Lambda Calculus (Church)
- basis for functional programming
- μ-recursive functions (Kleene)
- alternative functional programming basis

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

- Evidence
- Intuitive justification
- Huge numbers of equivalent models to TM's based on radically different ideas

Components of Turing's Intuitive Model of Computers

- Finite Control
- Brain/CPU that has only a finite \# of possible "states of mind"
- Recording medium
- An unlimited supply of blank "scratch paper" on which to write \& read symbols, each chosen from a finite set of possibilities
- Input also supplied on the scratch paper
- Focus of attention
- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

What is a Turing Machine?

What is a Turing Machine?

- Recording Medium
- An infinite read/write "tape" marked off into cells
- Each cell can store one symbol or be "blank"
- Tape is initially all blank except a few cells of the tape containing the input string
- Read/write head can scan one cell of the tape - starts on input
- In each step, a Turing Machine
- Reads the currently scanned symbol
- Based on state of mind and scanned symbol
- Overwrites symbol in scanned cell
- Moves read/write head left or right one cell
- Changes to a new state
- Each Turing Machine is specified by its finite set of rules

Sample Turing Machine

	-	0	1
s_{1}	$\left(1, s_{3}\right)$	$\left(1, s_{2}\right)$	$\left(0, s_{2}\right)$
s_{2}	$\left(H, s_{3}\right)$	$\left(R, s_{1}\right)$	$\left(R, s_{1}\right)$
s_{3}	$\left(H, s_{3}\right)$	$\left(R, s_{3}\right)$	$\left(R, s_{3}\right)$

What is a Turing Machine?

Turing Machine ミIdeal Java/C Program

- Ideal C/C++/Java programs
- Just like the C/C++/Java you're used to programming with, except you never run out of memory
- constructor methods always succeed
- malloc never fails
- Equivalent to Turing machines except a lot easier to program !
- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Turing's idea: Machines as data

- Original Turing machine definition
- A different "machine" M for each task
- Each machine \mathbf{M} is defined by a finite set of possible operations on finite set of symbols
- M has a finite description as a sequence of symbols, its "code"
- You already are used to this idea:
- We'll write <P> for the code of program \mathbf{P}
- i.e. $<\mathbf{P}>$ is the program text as a sequence of ASCII symbols and \mathbf{P} is what actually executes

Turing's Idea: A Universal Turing Machine

- A Turing machine interpreter U
- On input <P> and its input \mathbf{x}, \mathbf{U} outputs the same thing as \mathbf{P} does on input x
- At each step it decodes which operation P would have performed and simulates it.
- One Turing machine is enough
- Basis for modern stored-program computer
- Von Neumann studied Turing's UTM design

Halting Problem

- Given: the code of a program \mathbf{P} and an input \mathbf{x} for \mathbf{P}, i.e. given ($\langle\mathbf{P}\rangle, \mathbf{x}$)
- Output: 1 if \mathbf{P} halts on input \mathbf{x} $\mathbf{0}$ if \mathbf{P} does not halt on input \mathbf{x}

Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Proof by contradiction

- Suppose that H is a Turing machine that solves the Halting problem

```
Function D(x):
    - if H(x,x)=1 then
        - while (true); /* loop forever */
    - else
    - no-op; /* do nothing and halt */
    - endif
```

- What does D do on input <D>?
- Does it halt?

Does D halt on input <D>?

D halts on input <D>

Function $\mathrm{D}(\mathrm{x})$:

- if $\mathbf{H}(\mathbf{x}, \mathbf{x})=\mathbf{1}$ then
- while (true); /* loop forever */
- else
- no-op; /* do nothing and halt */
\Leftrightarrow H outputs 1 on input (<D>,<D>)
[since \mathbf{H} solves the halting problem and so $\mathbf{H}(<\mathbf{D}\rangle, \mathbf{x})$ outputs $\mathbf{1}$ iff \mathbf{D} halts on input $\mathbf{x}]$
\Leftrightarrow D runs forever on input <D>
[since \mathbf{D} goes into an infinite loop on \mathbf{x} iff $\mathbf{H}(\mathbf{x}, \mathbf{x})=\mathbf{1}$]

That's it!

- We proved that there is no computer program that can solve the Halting Problem.
- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have

