
CSE 311 Foundations of

Computing I

Lecture 26

Computability: Turing machines,
Undecidability of the Halting Problem

Spring 2013

1

Announcements

• Reading

– 7th edition: p. 201 and 13.5

– 6th edition: p. 177 and 12.5

• Topic list and sample final exam problems
have been posted

• Final exam, Monday, June 10

– 2:30-4:20 pm MGH 389.

2

Last lecture highlights

• Cardinality

• A set S is countable iff we can write it as

S={s1, s2, s3, ...} indexed by ℕℕℕℕ

• Set of rationals is countable

– “dovetailing”

• Σ* is countable

– {0,1}* = {λ,0,1,00,01,10,11,000,001,010,011,100,101,...}

• Set of all (Java) programs is countable

3

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5

...

Last lecture highlights

• The set of real numbers is not countable

– “diagonalization”

– Why doesn’t this show that the rationals aren’t

countable?
4

Last lecture highlights

• There exist functions that cannot be

computed by any program

– The set of all functions f : ℕ→{0,1,...,9}

is not countable

– The set of all (Java/C/C++) programs is countable

– So there are simply more functions than programs

5

Do we care?

• Are any of these functions, ones that we

would actually want to compute?

– The argument does not even give any example of

something that can’t be done, it just says that

such an example exists

• We haven’t used much of anything about

what computers (programs or people) can do

– Once we figure that out, we’ll be able to show

that some of these functions are really important

6

Before Java…more from our

Brief History of Reasoning

• 1930’s

– How can we formalize what algorithms are

possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming

• µ-recursive functions (Kleene)

– alternative functional programming basis

All

are

equivalent!

7

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes

all possible algorithms is equivalent in power to a

Turing machine

• Evidence

– Intuitive justification

– Huge numbers of equivalent models to TM’s

based on radically different ideas

8

Components of Turing’s Intuitive

Model of Computers

• Finite Control
– Brain/CPU that has only a finite # of possible “states of

mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on which to

write & read symbols, each chosen from a finite set of
possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the

recording medium at once

– Focus of attention can only shift a small amount at a time

9

What is a Turing Machine?

10

What is a Turing Machine?

• Recording Medium
– An infinite read/write “tape” marked off into cells

– Each cell can store one symbol or be “blank”

– Tape is initially all blank except a few cells of the tape containing
the input string

– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing Machine
– Reads the currently scanned symbol

– Based on state of mind and scanned symbol

• Overwrites symbol in scanned cell

• Moves read/write head left or right one cell

• Changes to a new state

• Each Turing Machine is specified by its finite set of rules

11

Sample Turing Machine

_ _ 1 1 0 1 1 _ _

12

_ 0 1

s1 (1,s3) (1,s2) (0,s2)

s2 (H,s3) (R,s1) (R,s1)

s3 (H,s3) (R,s3) (R,s3)

What is a Turing Machine?

13

Turing Machine ≡ Ideal Java/C Program

• Ideal C/C++/Java programs

– Just like the C/C++/Java you’re used to
programming with, except you never run out of
memory

• constructor methods always succeed

• malloc never fails

• Equivalent to Turing machines except a lot
easier to program !

– Turing machine definition is useful for breaking
computation down into simplest steps

– We only care about high level so we use programs
14

Turing’s idea: Machines as data

• Original Turing machine definition

– A different “machine” M for each task

– Each machine M is defined by a finite set of
possible operations on finite set of symbols

• M has a finite description as a sequence of
symbols, its “code”

• You already are used to this idea:

– We’ll write <P> for the code of program P

– i.e. <P> is the program text as a sequence of ASCII
symbols and P is what actually executes

15

Turing’s Idea: A Universal Turing

Machine

• A Turing machine interpreter U

– On input <P> and its input x, U outputs the same thing as P

does on input x

– At each step it decodes which operation P would have

performed and simulates it.

• One Turing machine is enough

– Basis for modern stored-program computer

• Von Neumann studied Turing’s UTM design

P
input

x
output

P(x) U
x output

P(x)
<<<<P>>>>

16

Halting Problem

• Given: the code of a program P and an input x

for P, i.e. given (<P>,x)

• Output: 1 if P halts on input x

0 if P does not halt on input x

Theorem (Turing): There is no program that

solves the halting problem

“The halting problem is undecidable”

17

Proof by contradiction

• Suppose that H is a Turing machine that solves
the Halting problem

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

• What does D do on input <D>?

– Does it halt?

18

D halts on input <D>

H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so

H(<D>,x) outputs 1 iff D halts on input x]

D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

19

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

Does D halt on input <D>?
That’s it!

• We proved that there is no computer program

that can solve the Halting Problem.

• This tells us that there is no compiler that can

check our programs and guarantee to find any

infinite loops they might have

20

