CSE 311 Foundations of Computing I

Lecture 24 FSM Limits, Connection to Circuits Spring 2013

Announcements

- Reading assignments

 7th Edition, Section 13.4
 6th Edition, Section 12.4
- Homework 7 due today
- Homework 8 out Friday, due Friday, June 7
- Final exam, Monday June 10. Room TBA. Study materials out Friday/Monday.

Last lecture highlights

• NFAs from Regular Expressions

(01 ∪1)*0

1

3

Last lecture highlights

• "Subset construction": NFA to DFA

2

NFA

DFA

Redrawing

6

8

DFAs ≡ Regular Expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA iff it has a regular expression

7

Generalized NFAs

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 - NFAs already have edges labeled λ or a
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Starting from NFA

• Add new start state and final state

• Then eliminate original states one by one, keeping the same language, until it looks like:

• Final regular expression will be A

Only two simplification rules:

• **Rule 1**: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

 Rule 2: Eliminate non-start/final state q₃ by replacing all

$$(q_1)$$
 $\xrightarrow{\mathbf{B}}$ (q_3) $\xrightarrow{\mathbf{C}}$ (q_2) by (q_1) $\xrightarrow{\mathbf{AB*C}}$ (q_2)

for *every* pair of states q_1 , q_2 (even if $q_1=q_2$)

Converting an NFA to a regular expression

- Consider the DFA for the mod 3 sum
 - Accept strings from {0,1,2}* where the digits mod
 3 sum of the digits is 0

Splicing out a node

- Label edges with regular expressions
- $\begin{array}{rrrr} t_0 {\rightarrow} t_1 {\rightarrow} t_0 : & 10^*2 \\ t_0 {\rightarrow} t_1 {\rightarrow} t_2 : & 10^*1 \\ t_2 {\rightarrow} t_1 {\rightarrow} t_0 : & 20^*2 \\ t_2 {\rightarrow} t_1 {\rightarrow} t_2 : & 20^*1 \end{array}$

9

11

12

Claim: No two strings in S can end at the same state of any DFA for A

Proof: Suppose $n \neq m$ and 0^n and 0^m end at the same state p.

Since Oⁿ1ⁿ is in A, following 1ⁿ after state p must lead to a final state.

But then the DFA would accept 0^m1ⁿ

which is a contradiction to the DFA recognizing A. \Box Given claim, the # of states of any DFA for A must be $\geq |S|$ which is not finite, which is impossible for a DFA. Consider the infinite set of strings S={λ, 0, 00, 000, 0000, ...}={0ⁿ : n ≥ 0}
Claim: No two strings in S can end at the same state of any DFA for B
Proof: Suppose n≠m and 0ⁿ and 0^m end at the same state p. Since 0ⁿ10ⁿ is in B, following 10ⁿ after state p must lead to a final state.
But then the DFA would accept 0^m10ⁿ which is not in B and is a contradiction since the DFA recognizes B. □

Given claim, the # of states of any DFA for A must be \geq |S| which is not finite, which is impossible for a DFA.

15

- The set P of strings of balanced parentheses cannot be recognized by any DFA
- What infinite set of simple strings can we choose that all must go to different states?
- For each pair of strings in this set what common extension should we choose that shows that they can't go to the same state?

FSMs in Hardware

- Encode the states in binary: e.g. states 0,1,2,3 represented as 000,100, 010,001, or as 00,01,10,11.
- Encode the input symbols as binary signals
- Encode the outputs possible as binary signals
- Build combinational logic circuit to compute transition function:

FSMs in Hardware

17

- Combine with sequential logic for
 - Registers to store bits of state
 - Clock pulse
- At start of clock pulse, current state bits from registers and input signals are released to the circuit
- At end of clock pulse, output bits are produced and next state bits are stored back in the same registers

Example: 1-bit Full Adder

FSM for binary addition

Assume that the two integers are a_{n-1}...a₂a₁a₀ and b_{n-1}...b₂b₁b₀ and bits arrive together as [a₀,b₀] then [a₁,b₁] etc.

FSM for binary addition using output on edges

Assume that the two integers are a_{n-1}...a₂a₁a₀ and b_{n-1}...b₂b₁b₀ and bits arrive together as [a₀,b₀] then [a₁,b₁] etc.

[1,1] Generate a carry of 1[0,1],[1,0] Propagate a carry of 1 if it was already there

FSMs without sequential logic

- What if the entire input bit-strings are available at all once at the start?
 - E.g. 64-bit binary addition
- Don't want to wait for 64 clock cycles to compute the output!
- Suppose all input strings have length **n**
 - Can chain together n copies of the state transition circuit as one big combinational logic circuit

A 2-bit ripple-carry adder

23

Problem with Chaining Transition Circuits

- Resulting Boolean circuit is "deep"
- There is a small delay at each gate in a Boolean circuit
 - The clock pulse has to be long enough so that all combinational logic circuits can be evaluated during a single pulse
 - Deep circuits mean slow clock.

Carry-Look-Ahead Adder

Compute generate $G_i = a_i \wedge b_i$ [1,1] propagate $P_i = a_i \bigoplus b_i$ [0,1],[1,0] These determine transition and output functions - Carry $C_i = G_i \vee (P_i \wedge C_{i-1})$ also written $C_i = G_i + P_i C_{i-1}$ - Sum_i = $P_i \bigoplus C_{i-1}$ Unwinding, we get $C_0 = G_0 \quad C_1 = G_1 + G_0 P_1 \quad C_2 = G_2 + G_1 P_2 + G_0 P_1 P_2$ $C_3 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 P_4$ etc.

Carry-Look-Ahead Adder

Compute all generate $G_i = a_i \wedge b_i$ [1,1] propagate $P_i = a_i \bigoplus b_i$ [0,1],[1,0]

Then compute all:

 $\begin{array}{cccc} C_0 = G_0 & C_1 = G_1 + G_0 P_1 & C_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 \\ C_3 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 \\ C_4 = G_4 + G_3 P_4 + G_2 P_3 P_4 + G_1 P_2 P_3 P_4 + G_0 P_1 P_2 P_3 P_4 & \text{etc.} \end{array}$ Finally, use these to compute

$$\begin{split} & \text{Sum}_0 = \text{P}_0 \quad \text{Sum}_1 = \text{P}_1 \bigoplus \text{C}_0 \quad \text{Sum}_2 = \text{P}_2 \bigoplus \text{C}_1 \\ & \text{Sum}_3 = \text{P}_3 \bigoplus \text{C}_2 \quad \text{Sum}_4 = \text{P}_4 \bigoplus \text{C}_3 \quad \text{Sum}_5 = \text{P}_5 \bigoplus \text{C}_4 \text{ etc} \end{split}$$
 If all C₁ are computed using 2-level logic, total depth is 6.

Smaller Fast Adders?

Carry-look-ahead circuit for carry C_{n-1} has 2 + 3 +...+ n = (n+2)(n-1)/2 gates – a lot more than ripple-carry adder circuit.

Can do this with roughly 2 $\log_2 n$ depth and linear size using ideas from DFAs

27

Speed things up but stay small?

- To go faster, work on both 1st half and 2nd half of the input at once
 - How can you determine action of FSM on 2nd half without knowing state reached after reading 1st half?

 $b_1b_2...b_{n/2}b_{n/2+1}...b_{n-1}b_n$ what state?

• Idea: Figure out what happens in 2nd half for all possible values of the middle state at once

29

b₇

31

Transition Function Composition

Transition table gives a function for each input symbol

State reached on input **b**₁...**b**_n is $f_{b_n}(f_{b_{n-1}}...(f_{b_2}(f_{b_1}(start)))...) = f_{b_n} \circ f_{b_{n-1}}... \circ f_{b_2} \circ f_{b_1}(start)$

Transition Function Composition

Computing all the values

 We need to compute all of $\mathbf{f}_{b_7} \circ \mathbf{f}_{b_6} \circ \mathbf{f}_{b_5} \circ \mathbf{f}_{b_4} \circ \mathbf{f}_{b_3} \circ \mathbf{f}_{b_1} \circ \mathbf{f}_{b_1} \circ \mathbf{f}_{b_0}$ Already computed $\mathbf{f}_{\mathbf{b}_6} \circ \mathbf{f}_{\mathbf{b}_5} \circ \mathbf{f}_{\mathbf{b}_4} \circ \mathbf{f}_{\mathbf{b}_3} \circ \mathbf{f}_{\mathbf{b}_2} \circ \mathbf{f}_{\mathbf{b}_1} \circ \mathbf{f}_{\mathbf{b}_0} = \mathbf{f}_{\mathbf{b}_6} \circ (\mathbf{f}_{\mathbf{b}_5} \circ \mathbf{f}_{\mathbf{b}_4}) \circ (\mathbf{f}_{\mathbf{b}_3} \circ \mathbf{f}_{\mathbf{b}_2} \circ \mathbf{f}_{\mathbf{b}_1} \circ \mathbf{f}_{\mathbf{b}_n})$ $f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}} = (f_{b_{5}} \circ f_{b_{4}}) \circ (f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}})$ $= \mathbf{f}_{b_4} \circ (\mathbf{f}_{b_3} \circ \mathbf{f}_{b_2} \circ \mathbf{f}_{b_1} \circ \mathbf{f}_{b_0})$ $f_{b_4} \circ f_{b_3} \circ f_{b_2} \circ f_{b_1} \circ f_{b_0}$ $\mathbf{f}_{b_3} \circ \mathbf{f}_{b_2} \circ \mathbf{f}_{b_1} \circ \mathbf{f}_{b_0}$ Already computed f_{b2}of_{b1}of_{b0} $= \mathbf{f}_{b_2} \circ (\mathbf{f}_{b_1} \circ \mathbf{f}_{b_0})$ f_{b1}∘f_{b0} Already computed f_{bo} Already computed

Parallel Prefix Circuit

- The general way of doing this efficiently is called a parallel prefix circuit
 - Designed and analyzed by Michael Fischer and Richard Ladner (University of Washington)
- Uses an adder composition operation that sets
 G"= G'+G P' and P"= P'P
 - we just show it for the part for computing P" which is a Parallel Prefix AND Circuit

The Parallel Prefix AND Circuit

Parallel Prefix Adder

- Circuit depth 2 log₂ n Circuit size 4 n log₂ n
- Can get linear size if depth goes to 2 log₂n+2
- Actual adder circuits in hardware use combinations of these ideas and more but this gives the basics
- Nice overview of adder circuits at http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html