
CSE 311 Foundations of

Computing I

Lecture 24

FSM Limits, Connection to Circuits

Spring 2013

1

Announcements

• Reading assignments

– 7th Edition, Section 13.4

– 6th Edition, Section 12.4

• Homework 7 due today

• Homework 8 out Friday, due Friday, June 7

• Final exam, Monday June 10. Room TBA.
Study materials out Friday/Monday.

2

Last lecture highlights

• NFAs from Regular Expressions

3

(01 ∪∪∪∪1)*0

0

λλλλ
λλλλ

λλλλ

λλλλ

0

1

1

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

Last lecture highlights

• “Subset construction”: NFA to DFA

4

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

1 in third position from end

5

A C DB
0,10,11

0,1

{A} {A, B}

{A, B, C}

{A, C}

{A, B, C, D}

{A, C, D}

{A, B, D}

{A, D}

1

1

1

1
0

0

0

1

0

1

0

0

0

1

1

0

Redrawing

6

{A,B} {A,B,C}

{A,B,C,D}

{A,C,D}

{A,B,D}{A,C}{A}

{A,D}

1

1
1 0

1

1

1

1

00
0

1

0

0

00

A C DB
0,10,11

0,1

DFAs ≡ Regular Expressions

We have shown how to build an optimal DFA for

every regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Theorem: A language is recognized by a DFA iff it

has a regular expression

7

Generalized NFAs

• Like NFAs but allow

– Parallel edges

– Regular Expressions as edge labels

• NFAs already have edges labeled λλλλ or a

• An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

• A string x is accepted iff there is a path from start to
final state labeled by a regular expression whose
language contains x

8

Starting from NFA

• Add new start state and final state

• Then eliminate original states one by one,

keeping the same language, until it looks like:

• Final regular expression will be A

9

λλλλ

λλλλ

λλλλ

A

Only two simplification rules:

• Rule 1: For any two states q1 and q2 with

parallel edges (possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by

replacing all

for every pair of states q1, q2 (even if q1=q2)
10

q1
q2

A

B

by
A⋃⋃⋃⋃B

q1
q2

A
B

C AB*Cq1 q3 q2 q1
q2by

Converting an NFA to a regular

expression

• Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits mod

3 sum of the digits is 0

11

t0 t2

t1

0

0
0

1 1

1

2

22

Splicing out a node

• Label edges with regular expressions

12

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2

t0→t1→t2 : 10*1

t2→t1→t0 : 20*2

t2→t1→t2 : 20*1

0

s
λ

f

λ

Finite Automaton without t1

13

t0 t2
R1

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

R4R2

R3

t0

R5

Final regular expression:

(0 ∪ 10*2 ∪ (2 ∪	10*1)(0 ∪ 20*1)*(1 ∪	20*2))*

f

λ

s
λ

f
λ

s
λ

What can Finite State Machines do?

• We’ve seen how we can get DFAs to recognize

all regular languages

• What about some other languages we can

generate with CFGs?

– { 0n1n : n≥0 }?

– Binary Palindromes?

– Strings of Balanced Parentheses?

14

A={0n1n : n≥0} cannot be recognized

by any DFA

Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}

Claim: No two strings in S can end at the same

state of any DFA for A

Proof: Suppose n≠m and 0n and 0m end at the same state p.

Since 0n1n is in A, following 1n after state p must
lead to a final state.

But then the DFA would accept 0m1n

which is a contradiction to the DFA recognizing A.

Given claim, the # of states of any DFA for A must be ≥ |S|
which is not finite, which is impossible for a DFA.

15

The set B of binary palindromes

cannot be recognized by any DFA
Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}={0n : n ≥ 0}

Claim: No two strings in S can end at the same

state of any DFA for B

Proof: Suppose n≠m and 0n and 0m end at the same state p.

Since 0n10n is in B, following 10n after state p must
lead to a final state.

But then the DFA would accept 0m10n which is not in B

and is a contradiction since the DFA recognizes B.

Given claim, the # of states of any DFA for A must be ≥ |S|
which is not finite, which is impossible for a DFA.

16

The set P of strings of balanced parentheses

cannot be recognized by any DFA

• What infinite set of simple strings can we

choose that all must go to different states?

• For each pair of strings in this set what

common extension should we choose that

shows that they can’t go to the same state?

17

FSMs in Hardware

• Encode the states in binary: e.g. states 0,1,2,3

represented as 000,100, 010,001, or as 00,01,10,11.

• Encode the input symbols as binary signals

• Encode the outputs possible as binary signals

• Build combinational logic circuit to compute

transition function:

18

Boolean Circuit for

State Transition

Function

current state next state

input signals output signals

FSMs in Hardware

• Combine with sequential logic for

– Registers to store bits of state

– Clock pulse

• At start of clock pulse, current state bits from
registers and input signals are released to the circuit

• At end of clock pulse, output bits are produced and
next state bits are stored back in the same registers

19

Boolean Circuit for

State Transition

Function

current state next state

input signals output signals

Example: 1-bit Full Adder

A

Sum

CoutCin

B

1-Bit Full Adder

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

current state

input signals

next state

output

20

FSM for binary addition

• Assume that the two integers are an-1...a2a1a0 and

bn-1...b2b1b0 and bits arrive together as [a0,b0] then

[a1,b1] etc.

s

Cout=1

1

[0,1],[1,0]

Cout=0

1

Cout=1

0

Cout=0

0

[0,1],[1,0]

[0,0] [0,1],[1,0] [1,1]

[0,1],[1,0]

[1,1]

[0,0]

[1,1]

[0,0]

[0,1],[1,0]

[0,0]
[1,1] Generate a carry of 1

[0,1],[1,0] Propagate a carry of 1 if it was already there
21

FSM for binary addition using output

on edges

• Assume that the two integers are an-1...a2a1a0 and

bn-1...b2b1b0 and bits arrive together as [a0,b0] then

[a1,b1] etc.

[1,1] Generate a carry of 1
[0,1],[1,0] Propagate a carry of 1 if it was already there

[0,1],[1,0]:1

Cout=0 Cout=1

[0,0]:0

[0,1],[1,0]:0

[0,0]:1

[1,1]:0
[1,1]:1

22

FSMs without sequential logic

• What if the entire input bit-strings are

available at all once at the start?

– E.g. 64-bit binary addition

• Don’t want to wait for 64 clock cycles to

compute the output!

• Suppose all input strings have length n

– Can chain together n copies of the state transition

circuit as one big combinational logic circuit

23

A 2-bit ripple-carry adder

a0 b0

CoutCin

Sum0

a

Sum

CoutCin

b

1-Bit Full Adder

a1 b1

Sum1

CoutCin0

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

24

Problem with Chaining Transition

Circuits

• Resulting Boolean circuit is “deep”

• There is a small delay at each gate in a

Boolean circuit

– The clock pulse has to be long enough so that all

combinational logic circuits can be evaluated

during a single pulse

– Deep circuits mean slow clock.

25

Carry-Look-Ahead Adder

Compute generate Gi= ai ∧ bi [1,1]

propagate Pi=ai ⊕ bi [0,1],[1,0]

These determine transition and output functions

– Carry Ci=Gi ∨	�Pi ∧	Ci-1) also written Ci=Gi+PiCi-1

– Sumi = Pi ⊕	Ci-1

Unwinding, we get

C0=G0 C1=G1+G0P1 C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4

etc.

26

Carry-Look-Ahead Adder

Compute all generate Gi= ai ∧ bi [1,1]

propagate Pi=ai ⊕ bi [0,1],[1,0]

Then compute all:

C0=G0 C1=G1+G0P1 C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4 etc.

Finally, use these to compute

Sum0 = P0 Sum1 = P1 ⊕	C0 Sum2 = P2 ⊕	C1

Sum3 = P3 ⊕	C2 Sum4 = P4 ⊕	C3 Sum5 = P5 ⊕	C4 etc

If all Ci are computed using 2-level logic, total depth is 6.

27

Smaller Fast Adders?

Carry-look-ahead circuit for carry Cn-1

has 2 + 3 +...+ n = (n+2)(n-1)/2 gates

– a lot more than ripple-carry adder circuit.

Can do this with roughly 2 log2n depth and linear

size using ideas from DFAs

28

Speed things up but stay small?

• To go faster, work on both 1st half and 2nd half

of the input at once

– How can you determine action of FSM on 2nd half

without knowing state reached after reading 1st

half?

29

b1b2...bn/2 bn/2+1 ...bn-1bn

what state?

• Idea: Figure out what happens in 2nd half for

all possible values of the middle state at once

Transition Function Composition

Transition table gives a function for each input symbol

30

State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

s0 s2 S3s1

111

0,1

0

0

0

s0 s2 s3s1

111

1

s0 s2 s3s1

0

0

0

0f0 f1

State reached on input b1...bn is

fbn
(fbn-1

...(fb2
(fb1

(start)))...)= fbn
∘ fbn-1

...∘ fb2
∘ fb1

(start)

Constant size 2-level
Boolean logic to

•convert input symbol to
bits for transition function

•compute composition of
two transition functions

Total depth 2 log2 n

and size ≈n

31

fb5
∘fb4

fb7
∘fb6

b7b6b4 b5

fb4
fb6

fb5
fb7

∘ ∘

∘

fb7
∘fb6

∘fb5
∘fb4

fb1
∘fb0

fb3
∘fb2

b0 b1 b2 b3

fb0
fb1

fb2
fb3

∘ ∘

∘

fb3
∘fb2

∘fb1
∘fb0

∘

fb7
∘fb6

∘fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

b

fb

∘

f g

g∘f

Transition Function Composition
Computing all the values

• We need to compute all of

fb7
∘fb6

∘fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

Already computed

fb6
∘fb5

∘fb4
∘fb3

∘fb2
∘fb1

∘fb0
=fb6

∘(fb5
∘fb4

)∘(fb3
∘fb2

∘fb1
∘fb0

)

fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

= (fb5
∘fb4

) ∘ (fb3
∘fb2

∘fb1
∘fb0

)

fb4
∘fb3

∘fb2
∘fb1

∘fb0
= fb4

∘ (fb3
∘fb2

∘fb1
∘fb0

)

fb3
∘fb2

∘fb1
∘fb0

Already computed

fb2
∘fb1

∘fb0
= fb2

∘ (fb1
∘fb0

)

fb1
∘fb0

Already computed

fb0
Already computed

32

Parallel Prefix Circuit

• The general way of doing this efficiently is

called a parallel prefix circuit

– Designed and analyzed by Michael Fischer and

Richard Ladner (University of Washington)

• Uses an adder composition operation that sets

G’’= G’+G P’ and P’’= P’P

– we just show it for the part for computing P’’

which is a Parallel Prefix AND Circuit

33

Parallel Prefix

n/2 inputs

The Parallel Prefix AND Circuit

Parallel Prefix

n/2 inputs

P1

Pn/2

Pn/2+1

Pn

Parallel Prefix
n inputs

P1

P1P2...Pn/2

P1P2...Pn/2Pn/2+1

P1P2...Pn

n/2 AND gates

per level

log2n levels

P1P2

34

Parallel Prefix Adder

• Circuit depth 2 log2 n
Circuit size 4 n log2 n

• Can get linear size if depth goes to 2 log2n+2

• Actual adder circuits in hardware use
combinations of these ideas and more but this
gives the basics

• Nice overview of adder circuits at
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

35

