Announcements

CSE 311 Foundations of Computing I

Lecture 24
FSM Limits, Connection to Circuits
Spring 2013

- Reading assignments
$-7^{\text {th }}$ Edition, Section 13.4
- $6^{\text {th }}$ Edition, Section 12.4
- Homework 7 due today
- Homework 8 out Friday, due Friday, June 7
- Final exam, Monday June 10. Room TBA. Study materials out Friday/Monday.

Last lecture highlights

- NFAs from Regular Expressions
(01 $\cup 1$)* 0

Last lecture highlights

- "Subset construction": NFA to DFA

NFA

DFA

1 in third position from end

DFAs \equiv Regular Expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA iff it has a regular expression

Redrawing

Generalized NFAs

- Like NFAs but allow
- Parallel edges
- Regular Expressions as edge labels
- NFAs already have edges labeled λ or \boldsymbol{a}
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by \mathbf{A}
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Starting from NFA

- Add new start state and final state

- Then eliminate original states one by one, keeping the same language, until it looks like:

- Final regular expression will be A

Only two simplification rules:

- Rule 1: For any two states q_{1} and q_{2} with parallel edges (possibly $q_{1}=q_{2}$), replace

AUB

- Rule 2: Eliminate non-start/final state q_{3} by replacing all

for every pair of states q_{1}, q_{2} (even if $q_{1}=q_{2}$)

Converting an NFA to a regular expression

- Consider the DFA for the mod 3 sum
- Accept strings from $\{0,1,2\}^{*}$ where the digits mod 3 sum of the digits is 0

Splicing out a node

- Label edges with regular expressions

Finite Automaton without t_{1}

```
\(R_{1}: 0 \cup 10 * 2\)
\(R_{2}: 2 \cup 10^{* 1}\)
\(R_{3}: 1 \cup 20^{*} 2\)
\(R_{4}: 0 \cup 20 * 1\)
```

$R_{5}: R_{1} \cup R_{2} R_{4}{ }^{*} R_{3}$

Final regular expression:
($\left.0 \cup 10^{*} 2 \cup\left(2 \cup 10^{*} 1\right)\left(0 \cup 20^{*} 1\right)^{*}\left(1 \cup 20^{*} 2\right)\right)^{*}$

What can Finite State Machines do?

- We've seen how we can get DFAs to recognize all regular languages
- What about some other languages we can generate with CFGs?
$-\left\{0^{n 1} 1^{n}: n \geq 0\right\}$?
- Binary Palindromes?
- Strings of Balanced Parentheses?

$A=\left\{0^{n} 1^{n}: n \geq 0\right\}$ cannot be recognized by any DFA

Consider the infinite set of strings

$$
S=\{\lambda, 0,00,000,0000, \ldots\}
$$

Claim: No two strings in S can end at the same state of any DFA for A
Proof: Suppose $\mathrm{n} \neq \mathrm{m}$ and 0^{n} and 0^{m} end at the same state p.
Since $0^{n} 1^{n}$ is in A, following 1^{n} after state p must lead to a final state.
But then the DFA would accept $0^{m} 1^{n}$ which is a contradiction to the DFA recognizing A. \square Given claim, the \# of states of any DFA for A must be $\geq|S|$ which is not finite, which is impossible for a DFA.

The set B of binary palindromes cannot be recognized by any DFA

Consider the infinite set of strings
$S=\{\lambda, 0,00,000,0000, \ldots\}=\left\{0^{n}: n \geq 0\right\}$
Claim: No two strings in S can end at the same state of any DFA for B
Proof: Suppose $\mathrm{n} \neq \mathrm{m}$ and 0^{n} and 0^{m} end at the same state p .
Since $0^{n} 10^{n}$ is in B, following 10^{n} after state p must lead to a final state.
But then the DFA would accept $0^{m} 10^{n}$ which is not in B and is a contradiction since the DFA recognizes B. \square

Given claim, the \# of states of any DFA for A must be $\geq|S|$ which is not finite, which is impossible for a DFA.

The set P of strings of balanced parentheses cannot be recognized by any DFA

- What infinite set of simple strings can we choose that all must go to different states?
- For each pair of strings in this set what common extension should we choose that shows that they can't go to the same state?

FSMs in Hardware

- Encode the states in binary: e.g. states 0,1,2,3 represented as 000,100, 010,001, or as 00,01,10,11.
- Encode the input symbols as binary signals
- Encode the outputs possible as binary signals
- Build combinational logic circuit to compute transition function:

FSMs in Hardware

- Combine with sequential logic for - Registers to store bits of state - Clock pulse
- At start of clock pulse, current state bits from registers and input signals are released to the circuit
- At end of clock pulse, output bits are produced and next state bits are stored back in the same registers

Example: 1-bit Full Adder

FSM for binary addition

- Assume that the two integers are $a_{n-1} \cdots a_{2} a_{1} a_{0}$ and $\mathbf{b}_{\mathrm{n}-1} \ldots \mathbf{b}_{\mathbf{2}} \mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}$ and bits arrive together as $\left[\mathbf{a}_{\mathbf{0}}, \mathbf{b}_{\mathbf{0}}\right]$ then [a_{1}, b_{1}] etc.

FSM for binary addition using output on edges

- Assume that the two integers are $a_{n-1} \cdots a_{2} a_{1} a_{0}$ and $b_{n-1} \ldots b_{2} b_{1} b_{0}$ and bits arrive together as $\left[a_{0}, b_{0}\right]$ then [a_{1}, b_{1}] etc.

[1,1] Generate a carry of 1
$[0,1],[1,0]$ Propagate a carry of 1 if it was already there

FSMs without sequential logic

- What if the entire input bit-strings are available at all once at the start?
- E.g. 64-bit binary addition
- Don't want to wait for 64 clock cycles to compute the output!
- Suppose all input strings have length \mathbf{n}
- Can chain together \mathbf{n} copies of the state transition circuit as one big combinational logic circuit

A 2-bit ripple-carry adder

Problem with Chaining Transition Circuits

- Resulting Boolean circuit is "deep"
- There is a small delay at each gate in a Boolean circuit
- The clock pulse has to be long enough so that all combinational logic circuits can be evaluated during a single pulse
- Deep circuits mean slow clock.

Carry-Look-Ahead Adder

Compute generate $\mathrm{G}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \wedge \mathrm{b}_{\mathrm{i}}$
propagate $P_{i}=a_{i} \oplus b_{i}$
[0,1],[1,0]
These determine transition and output functions

$$
\text { - Carry } C_{i}=G_{i} \vee\left(P_{i} \wedge C_{i-1}\right) \text { also written } C_{i}=G_{i}+P_{i} C_{i-1}
$$

- Sum $_{i}=P_{i} \oplus C_{i-1}$

Unwinding, we get

$$
\begin{aligned}
& C_{0}=G_{0} \quad C_{1}=G_{1}+G_{0} P_{1} \quad C_{2}=G_{2}+G_{1} P_{2}+G_{0} P_{1} P_{2} \\
& C_{3}=G_{3}+G_{2} P_{3}+G_{1} P_{2} P_{3}+G_{0} P_{1} P_{2} P_{3} \\
& C_{4}=G_{4}+G_{3} P_{4}+G_{2} P_{3} P_{4}+G_{1} P_{2} P_{3} P_{4}+G_{0} P_{1} P_{2} P_{3} P_{4} \\
& \text { etc. }
\end{aligned}
$$

Carry-Look-Ahead Adder

Compute all generate $G_{i}=a_{i} \wedge b_{i} \quad[1,1]$ propagate $P_{i}=a_{i} \oplus b_{i} \quad[0,1],[1,0]$
Then compute all:

$$
\begin{aligned}
& \mathrm{C}_{0}=\mathrm{G}_{0} \quad \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{G}_{0} \mathrm{P}_{1} \quad \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{G}_{1} \mathrm{P}_{2}+\mathrm{G}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \\
& \mathrm{C}_{3}=\mathrm{G}_{3}+\mathrm{G}_{2} \mathrm{P}_{3}+\mathrm{G}_{1} \mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{G}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \\
& \mathrm{C}_{4}=\mathrm{G}_{4}+G_{3} P_{4}+G_{2} P_{3} P_{4}+G_{1} P_{2} P_{3} P_{4}+G_{0} P_{1} P_{2} P_{3} P_{4} \quad \text { etc. }
\end{aligned}
$$

Finally, use these to compute

$$
\begin{aligned}
& \text { Sum }_{0}=P_{0} \quad \text { Sum }_{1}=P_{1} \oplus C_{0} \quad \text { Sum }_{2}=P_{2} \oplus C_{1} \\
& \text { Sum }_{3}=P_{3} \oplus C_{2} \quad \text { Sum }_{4}=P_{4} \oplus C_{3} \quad \text { Sum }_{5}=P_{5} \oplus C_{4} \text { etc }
\end{aligned}
$$

If all C_{i} are computed using 2 -level logic, total depth is 6 .

Smaller Fast Adders?

Carry-look-ahead circuit for carry $\mathrm{C}_{\mathrm{n}-1}$ has $2+3+\ldots+n=(n+2)(n-1) / 2$ gates

- a lot more than ripple-carry adder circuit.

Can do this with roughly $2 \log _{2} n$ depth and linear size using ideas from DFAs

Speed things up but stay small?

- To go faster, work on both $1^{\text {st }}$ half and $2^{\text {nd }}$ half of the input at once
- How can you determine action of FSM on $2^{\text {nd }}$ half without knowing state reached after reading $1^{\text {st }}$ half?

$$
\begin{gathered}
\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{n} / 2} \uparrow_{\mathrm{n} / 2+1} \cdots \mathrm{~b}_{\mathrm{n}-1} \mathrm{~b}_{\mathrm{n}} \\
\text { what state? }
\end{gathered}
$$

- Idea: Figure out what happens in $2^{\text {nd }}$ half for all possible values of the middle state at once

Transition Function Composition

State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{\mathbf{0}}$	$\mathrm{s}_{\mathbf{1}}$
s_{1}	$\mathrm{~s}_{\mathbf{0}}$	$\mathrm{s}_{\mathbf{2}}$
$\mathrm{s}_{\mathbf{2}}$	$\mathrm{s}_{\mathbf{0}}$	$\mathrm{s}_{\mathbf{3}}$
$\mathrm{s}_{\mathbf{3}}$	$\mathrm{s}_{\mathbf{3}}$	$\mathrm{s}_{\mathbf{3}}$

Transition table gives a function for each input symbol

State reached on input $\mathbf{b}_{1} \ldots \boldsymbol{b}_{\mathbf{n}}$ is
$f_{b_{n}}\left(f_{b_{n-1}} \ldots\left(f_{b_{2}}\left(f_{b_{1}}(\right.\right.\right.$ start $\left.\left.\left.)\right)\right) \ldots\right)=f_{b_{n}} \circ f_{b_{n-1}} \ldots \circ f_{b_{2}} \circ f_{b_{1}}($ start $)$

Transition Function Composition

Computing all the values

- We need to compute all of

$f_{b_{7}} \circ f_{b_{6}} \circ f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}}$	Already computed
$f_{b_{6}} \circ f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$	$=f_{b_{6}} \circ\left(f_{b_{5}} \circ f_{b_{4}}\right) \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}\right)$
$f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$	$=\left(f_{b_{5}} \circ f_{b_{4}}\right) \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}\right)$
$f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$	$=f_{b_{4}} \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}}{ }^{\circ} f_{b_{0}}\right)$
$\mathrm{f}_{\mathrm{b}_{3}} \circ \mathrm{f}_{\mathrm{b}_{2}} \circ \mathrm{f}_{\mathrm{b}_{1}} \circ \mathrm{f}_{\mathrm{b}_{0}}$	Already computed
$f_{b_{2}}$ ${ }^{\text {d }} \mathrm{f}_{\mathrm{b}_{1}}$ of $\mathrm{f}_{\mathrm{b}_{0}}$	$=\mathrm{f}_{\mathrm{b}_{2}} \circ\left(\mathrm{f}_{\mathrm{b}_{1}} \circ \mathrm{f}_{\mathrm{b}_{0}}\right)$
$\mathrm{f}_{\mathrm{b}_{1}}$ of $\mathrm{f}_{\mathrm{b}_{0}}$	Already computed
$\mathrm{f}_{\mathrm{b}_{0}}$	Already computed

Parallel Prefix Circuit

- The general way of doing this efficiently is called a parallel prefix circuit
- Designed and analyzed by Michael Fischer and Richard Ladner (University of Washington)
- Uses an adder composition operation that sets $G^{\prime \prime}=G^{\prime}+G P^{\prime}$ and $P^{\prime \prime}=P^{\prime} P$
- we just show it for the part for computing $P^{\prime \prime}$ which is a Parallel Prefix AND Circuit

The Parallel Prefix AND Circuit

Parallel Prefix Adder

- Circuit depth $2 \log _{2} n$

Circuit size $4 \mathrm{n} \log _{2} \mathrm{n}$

- Can get linear size if depth goes to $2 \log _{2} n+2$
- Actual adder circuits in hardware use combinations of these ideas and more but this gives the basics
- Nice overview of adder circuits at http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

