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Announcements

• Reading assignments

– 7th Edition,  Section 13.4

– 6th Edition,  Section 12.4

• Homework 7 due today

• Homework 8 out Friday, due Friday, June 7

• Final exam, Monday June 10.  Room TBA. 
Study materials out Friday/Monday.
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Last lecture highlights

• NFAs from Regular Expressions
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Last lecture highlights

• “Subset construction”: NFA to DFA
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1 in third position from end
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DFAs ≡ Regular Expressions

We have shown how to build an optimal DFA for 

every regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Theorem: A language is recognized by a DFA iff it 

has a regular expression
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Generalized NFAs 

• Like NFAs but allow

– Parallel edges

– Regular Expressions as edge labels

• NFAs already have edges labeled λλλλ or a

• An edge labeled by A can be followed by reading a 
string of input chars that is in the language 
represented by A

• A string x is accepted iff there is a path from start to 
final state labeled by a regular expression whose 
language contains x
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Starting from NFA

• Add new start state and final state

• Then eliminate original states one by one, 

keeping the same language, until it looks like:

• Final regular expression will be A
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Only two simplification rules:

• Rule 1:  For any two states q1 and q2 with 

parallel edges (possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by 

replacing all

for every pair of states q1, q2 (even if q1=q2)
10

q1
q2

A

B

by
A⋃⋃⋃⋃B

q1
q2

A
B

C AB*Cq1 q3 q2 q1
q2by

Converting an NFA to a regular 

expression

• Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits mod 

3 sum of the digits is 0
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Splicing out a node

• Label edges with regular expressions
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t0→t1→t0 :   10*2

t0→t1→t2 :   10*1

t2→t1→t0 :   20*2

t2→t1→t2 :   20*1
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Finite Automaton without t1
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t0 t2
R1

R1:   0 ∪ 10*2

R2:   2 ∪ 10*1

R3:   1 ∪ 20*2

R4:   0 ∪ 20*1

R5:   R1 ∪ R2R4*R3

R4R2

R3

t0

R5

Final regular expression:

(0 ∪ 10*2 ∪ (2 ∪	10*1)(0 ∪ 20*1)*(1 ∪	20*2))*
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What can Finite State Machines do?

• We’ve seen how we can get DFAs to recognize 

all regular languages

• What about some other languages we can 

generate with CFGs?

– { 0n1n  : n≥0 }?

– Binary Palindromes?

– Strings of Balanced Parentheses?
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A={0n1n : n≥0} cannot be recognized 

by any DFA

Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}

Claim: No two strings in S can end at the same   

state of any DFA for A

Proof: Suppose n≠m and 0n and 0m end at the same state p.   

Since 0n1n is in A, following 1n after state p must    
lead to a final state.

But then the DFA would accept 0m1n

which is a contradiction to the DFA recognizing A. 

Given claim, the # of states of any DFA for A must be ≥ |S| 
which is not finite, which is impossible for a DFA. 
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The set B of binary palindromes 

cannot be recognized by any DFA
Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}={0n : n ≥ 0}

Claim: No two strings in S can end at the same   

state of any DFA for B

Proof: Suppose n≠m and 0n and 0m end at the same state p.   

Since 0n10n is in B, following 10n after state p must 
lead to a final state.

But then the DFA would accept 0m10n which is not in B

and is a contradiction since the DFA recognizes B. 

Given claim, the # of states of any DFA for A must be ≥ |S| 
which is not finite, which is impossible for a DFA. 
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The set P of strings of balanced parentheses 

cannot be recognized by any DFA

• What infinite set of simple strings can we 

choose that all must go to different states?

• For each pair of strings in this set what 

common extension should we choose that 

shows that they can’t go to the same state?
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FSMs in Hardware

• Encode the states in binary:  e.g. states 0,1,2,3 

represented as 000,100, 010,001, or as 00,01,10,11.

• Encode the input symbols as binary signals

• Encode the outputs possible as binary signals

• Build combinational logic circuit to compute 

transition function:
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Boolean Circuit for 

State Transition 

Function

current state next state

input signals output signals

FSMs in Hardware

• Combine with  sequential logic for

– Registers to store bits of state

– Clock pulse

• At start of clock pulse, current state bits from 
registers and input signals are released to the circuit

• At end of clock pulse, output bits are produced and 
next state bits are stored back in the same registers
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Boolean Circuit for 

State Transition 

Function

current state next state

input signals output signals

Example: 1-bit Full Adder

A

Sum

CoutCin

B

1-Bit Full Adder

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

current state

input signals

next state

output
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FSM for binary addition 

• Assume that the two integers are an-1...a2a1a0 and    

bn-1...b2b1b0 and bits arrive together as [a0,b0] then 

[a1,b1] etc. 

s

Cout=1

1

[0,1],[1,0]

Cout=0

1

Cout=1

0

Cout=0

0

[0,1],[1,0]

[0,0] [0,1],[1,0] [1,1]

[0,1],[1,0]

[1,1]

[0,0]

[1,1]

[0,0]

[0,1],[1,0]

[0,0]
[1,1] Generate a carry  of 1

[0,1],[1,0] Propagate a carry of 1 if it was already there
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FSM for binary addition using output 

on edges 

• Assume that the two integers are an-1...a2a1a0 and    

bn-1...b2b1b0 and bits arrive together as [a0,b0] then 

[a1,b1] etc.

[1,1] Generate a carry  of 1
[0,1],[1,0] Propagate a carry of 1 if it was already there

[0,1],[1,0]:1

Cout=0 Cout=1

[0,0]:0

[0,1],[1,0]:0

[0,0]:1

[1,1]:0
[1,1]:1

22

FSMs without sequential logic 

• What if the entire input bit-strings are 

available at all once at the start?

– E.g. 64-bit binary addition

• Don’t want to wait for 64 clock cycles to 

compute the output!

• Suppose all input strings have length n

– Can chain together n copies of the state transition 

circuit as one big combinational logic circuit
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A 2-bit ripple-carry adder

a0 b0

CoutCin

Sum0
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1-Bit Full Adder

a1 b1

Sum1

CoutCin0

A

B

Cin
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B
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Problem with Chaining Transition 

Circuits

• Resulting Boolean circuit is “deep”

• There is a small delay at each gate in a 

Boolean circuit

– The clock pulse has to be long enough so that all 

combinational logic circuits can be evaluated 

during a single pulse

– Deep circuits mean slow clock.
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Carry-Look-Ahead Adder

Compute generate Gi= ai ∧ bi [1,1]     

propagate Pi=ai ⊕ bi [0,1],[1,0]

These determine transition and output functions

– Carry   Ci=Gi ∨	�Pi ∧	Ci-1 )  also written  Ci=Gi+PiCi-1

– Sumi = Pi ⊕	Ci-1

Unwinding, we get

C0=G0         C1=G1+G0P1          C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4

etc.
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Carry-Look-Ahead Adder

Compute all generate Gi= ai ∧ bi [1,1]     

propagate Pi=ai ⊕ bi [0,1],[1,0]

Then compute all:

C0=G0         C1=G1+G0P1          C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4 etc.

Finally,  use these to compute

Sum0 = P0 Sum1 = P1 ⊕	C0 Sum2 = P2 ⊕	C1                                    

Sum3 = P3 ⊕	C2 Sum4 = P4 ⊕	C3 Sum5 = P5 ⊕	C4 etc

If all Ci are computed using 2-level logic, total depth is 6.
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Smaller Fast Adders?

Carry-look-ahead circuit for carry Cn-1

has 2 + 3 +...+ n = (n+2)(n-1)/2  gates

– a lot more than ripple-carry adder circuit.

Can do this with roughly 2 log2n depth and linear 

size using ideas from DFAs
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Speed things up but stay small?

• To go faster, work on both 1st half and 2nd half 

of the input at once

– How can you determine action of FSM on 2nd half 

without knowing state reached after reading 1st

half?
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b1b2...bn/2 bn/2+1 ...bn-1bn

what state?

• Idea:  Figure out what happens in 2nd half for 

all possible values of the middle state at once

Transition Function Composition

Transition table gives a function for each input symbol
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State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

s0 s2 S3s1

111

0,1

0

0

0

s0 s2 s3s1

111

1

s0 s2 s3s1

0

0

0

0f0 f1

State reached on input b1...bn is

fbn
(fbn-1

...(fb2
(fb1

(start)))...)= fbn
∘ fbn-1

...∘ fb2
∘ fb1

(start)

Constant size 2-level 
Boolean logic to 

•convert input symbol to
bits for transition function

•compute composition of
two transition functions

Total depth 2 log2 n

and size ≈n
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Transition Function Composition
Computing all the values

• We need to compute all of

fb7
∘fb6

∘fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

Already computed

fb6
∘fb5

∘fb4
∘fb3

∘fb2
∘fb1

∘fb0
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)∘(fb3
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∘fb1
∘fb0

)
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∘fb1
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∘fb4

) ∘ (fb3
∘fb2

∘fb1
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)

fb4
∘fb3

∘fb2
∘fb1
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= fb4

∘ (fb3
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)

fb3
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fb2
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)
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fb0 
Already computed
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Parallel Prefix Circuit

• The general way of doing this efficiently is 

called a parallel prefix circuit

– Designed and analyzed by Michael Fischer and 

Richard Ladner (University of Washington)

• Uses an adder composition operation that sets 

G’’= G’+G P’ and P’’= P’P

– we just show it for the part for computing P’’ 

which is a Parallel Prefix AND Circuit
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Parallel Prefix

n/2 inputs

The Parallel Prefix AND Circuit

Parallel Prefix

n/2 inputs

P1

Pn/2

Pn/2+1

Pn

Parallel Prefix 
n inputs

P1

P1P2...Pn/2

P1P2...Pn/2Pn/2+1

P1P2...Pn

n/2 AND gates 

per level

log2n levels

P1P2
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Parallel Prefix Adder

• Circuit depth  2 log2 n                                                  
Circuit size   4 n log2 n

• Can get linear size if depth goes to 2 log2n+2

• Actual adder circuits in hardware use 
combinations of these ideas and more but this 
gives the basics

• Nice overview of adder circuits at
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html
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