Announcements

 \title{
CSE 311 Foundations of
 \title{ \section*{CSE 311 Foundations of Computing I}

 Computing I}}

Lecture 23
NFAs, Regular Expressions, and
Equivalence with DFAs
Spring 2013

- Reading assignments
$-7^{\text {th }}$ Edition, Sections 13.3 and 13.4
-6 ${ }^{\text {th }}$ Edition, Section 12.3 and 12.4

Last lecture highlights

Finite State Machines with output at states

State minimization

\Rightarrow

Last lecture highlights

Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string λ

Definition: The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-bystep at the same time in parallel

Design an NFA with 4 states to recognize the set of binary strings whose $3^{\text {rd }}$ from last character is a 1

Design an NFA to recognize the set of binary strings that contain 111 or have an even \# of 1's

NFAs and Regular Expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Note: One can also find a regular expression to describe the language recognized by any NFA but we won't prove that fact

Regular expressions over Σ

- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A^{*}

Basis

- Case Ø:
- Case λ :
- Case \boldsymbol{a} :

Basis

- Case \varnothing :
- Case λ :
- Case \boldsymbol{a} :

Inductive Hypothesis

- Suppose that for some regular expressions \mathbf{A} and \mathbf{B} there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by A and N_{B} recognizes the language given by \mathbf{B}

Inductive Step

- Case $(\mathbf{A} \cup \mathbf{B})$:

- Case $(\mathbf{A} \cup \mathbf{B})$:

Inductive Step

N_{B}

Inductive Step

- Case (AB):

Inductive Step

- Case (AB):

- Case A*

Inductive Step

Build a NFA for $(01 \cup 1)^{*} 0$

Solution

$(01 \cup 1) * 0$

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Conversion of NFAs to a DFAs

- Proof Idea:
- The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

- New start state for DFA
- The set of all states reachable from the start state of the NFA using only edges labeled λ

NFA

DFA

Conversion of NFAs to a DFAs

- For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S, then
- following one edge labeled by s, and
- then following some number of edges labeled by λ
$-T$ will be \varnothing if no edges from S labeled s exist

Example: NFA to DFA

Conversion of NFAs to a DFAs

- Final states for the DFA
- All states whose set contain some final state of the NFA

a,b,c,e

DFA

Example: NFA to DFA

a, b

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

DFA

Exponential blow-up in simulating

 nondeterminism- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
- n-state NFA yields DFA with at most 2^{n} states
- We saw an example where roughly 2^{n} is necessary
- Is the $\mathrm{n}^{\text {th }}$ char from the end a 1 ?
- The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

