
CSE 311 Foundations of

Computing I

Lecture 23

NFAs, Regular Expressions, and
Equivalence with DFAs

Spring 2013

1

Announcements

• Reading assignments

– 7th Edition, Sections 13.3 and 13.4

– 6th Edition, Section 12.3 and 12.4

2

Last lecture highlights

Finite State Machines with output at states

State minimization

3

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3

Last lecture highlights

4

s0 s2 s3s1

111

0,1

0

0

0

Lemma: The language recognized by a DFA is the set of

strings x that label some path from its start state to one

of its final states

Nondeterministic Finite Automaton (NFA)

• Graph with start state, final states, edges labeled by

symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol - can have 0 or >1

– Also can have edges labeled by empty string λλλλ

• Definition: The language recognized by an NFA is the

set of strings x that label some path from its start

state to one of its final states

5

s0 s2 s3s1

111

0,10,1

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x
from the start state to some final state?

• Perfect guesser: The NFA has input x and
whenever there is a choice of what to do it
magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation
runs all possible computations on x step-by-
step at the same time in parallel

6

Design an NFA with 4 states to recognize the set of

binary strings whose 3rd from last character is a 1

7

Design an NFA to recognize the set of binary

strings that contain 111 or have an even # of 1’s

8

Theorem: For any set of strings (language) A

described by a regular expression, there is an

NFA that recognizes A.

Proof idea: Structural induction based on the

recursive definition of regular expressions...

Note: One can also find a regular expression to describe the

language recognized by any NFA but we won’t prove that fact

NFAs and Regular Expressions

9

Regular expressions over Σ

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

• (A ∪ B)

• (AB)

• A*

10

Basis

• Case ∅∅∅∅:

• Case λλλλ:

• Case a:

11

Basis

• Case ∅∅∅∅:

• Case λλλλ:

• Case a:

12

a

Inductive Hypothesis

• Suppose that for some regular expressions A

and B there exist NFAs NA and NB such that

NA recognizes the language given by A and

NB recognizes the language given by B

13

NA NB

Inductive Step

• Case (A ∪ B):

14

NA

NB

Inductive Step

• Case (A ∪ B):

15

NA

NB

λλλλ

λλλλ

Inductive Step

• Case (AB):

16

NA
NB

Inductive Step

• Case (AB):

17

NA
NB

λλλλ

λλλλ

Inductive Step

• Case A*

18

NA

Inductive Step

• Case A*

19

NA

λλλλ

λλλλ

λλλλ

Build a NFA for (01 ∪1)*0

20

Solution

21

(01 ∪∪∪∪1)*0

0

λλλλ
λλλλ

λλλλ

λλλλ

0

1

1

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that

recognizes exactly the same language

22

Conversion of NFAs to a DFAs

• Proof Idea:

– The DFA keeps track of ALL the states that the part

of the input string read so far can reach in the NFA

– There will be one state in the DFA for each subset

of states of the NFA that can be reached by some

string

23

Conversion of NFAs to a DFAs

• New start state for DFA

– The set of all states reachable from the start state

of the NFA using only edges labeled λλλλ

24

a,b,e,f

f

e

ba
λλλλ

λλλλ

λλλλ

NFA DFA

Conversion of NFAs to a DFAs

• For each state of the DFA corresponding to a set S of

states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the set

of states of the NFA reached by
• starting from some state in S, then

• following one edge labeled by s, and

• then following some number of edges labeled by λ

– T will be ∅∅∅∅ if no edges from S labeled s exist

25

f

e

b

λ

λ
c

d

g

λλλλ

1

1

1

1

b,e,f c,d,e,g
1

Conversion of NFAs to a DFAs

• Final states for the DFA

– All states whose set contain some final state of the

NFA

26

a,b,c,e

ce

b
a

NFA
DFA

Example: NFA to DFA

27

c

a

b

0

λλλλ

0,1

1

0

NFA

DFA

Example: NFA to DFA

28

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

29

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

30

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

31

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅∅∅∅

10

Example: NFA to DFA

32

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅∅∅∅

1

0,1

0

Example: NFA to DFA

33

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

Example: NFA to DFA

34

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

Exponential blow-up in simulating

nondeterminism

• In general the DFA might need a state for every
subset of states of the NFA

– Power set of the set of states of the NFA

– n-state NFA yields DFA with at most 2n states

– We saw an example where roughly 2n is necessary

• Is the nth char from the end a 1?

• The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid of
nondeterminism for polynomial-time algorithms

35

