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Announcements

• Reading assignments

– 7th Edition,  Sections 13.3 and 13.4

– 6th Edition,  Section 12.3 and 12.4
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Last lecture highlights

Finite State Machines with output at states

State minimization

3

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3

Last lecture highlights

4

s0 s2 s3s1

111

0,1

0

0

0

Lemma:  The language recognized by a DFA is the set of

strings x that label some path from its start state to one

of its final states



Nondeterministic Finite Automaton (NFA)

• Graph with start state, final states, edges labeled by 

symbols (like DFA) but

– Not required to have exactly 1 edge out of each state 

labeled by each symbol  - can have 0 or >1

– Also can have edges labeled by empty string λλλλ

• Definition: The language recognized by an NFA is the 

set of strings  x that label some path from its start 

state to one of its final states
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Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x 
from the start state to some final state?  

• Perfect guesser: The NFA has input x and 
whenever there is a choice of what to do it 
magically guesses a good one (if one exists)

• Parallel exploration:  The NFA computation 
runs all possible computations on x step-by-
step at the same time in parallel
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Design an NFA with 4 states to recognize the set of 

binary strings whose 3rd from last character is a 1
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Design an NFA to recognize the set of binary 

strings that contain 111 or have an even # of 1’s
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Theorem: For any set of strings (language) A

described by a regular expression, there is an 

NFA that recognizes A.  

Proof idea:   Structural induction based on the 

recursive definition of regular expressions...

Note: One can also find a regular expression to describe the 

language recognized by any NFA but we won’t prove that fact

NFAs and Regular Expressions
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Regular expressions over Σ

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

• (A ∪ B)

• (AB)

• A*
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Basis 

• Case ∅∅∅∅:

• Case λλλλ:

• Case a:
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Basis 

• Case ∅∅∅∅:

• Case λλλλ:

• Case a:
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a



Inductive Hypothesis

• Suppose that for some regular expressions A

and B there exist NFAs NA and NB such that   

NA recognizes the language given by A and     

NB recognizes the language given by B
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NA NB

Inductive Step

• Case (A ∪ B):
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NA

NB

Inductive Step

• Case (A ∪ B):
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NB
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Inductive Step

• Case (AB):
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Inductive Step

• Case (AB):
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Inductive Step

• Case A*
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NA

Inductive Step

• Case A*
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Build a NFA for (01 ∪1)*0
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Solution
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NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 

recognizes exactly the same language
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Conversion of NFAs to a DFAs

• Proof Idea:

– The DFA keeps track of ALL the states that the part 

of the input string read so far can reach in the NFA

– There will be one state in the DFA for each subset

of states of the NFA that can be reached by some 

string
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Conversion of NFAs to a DFAs

• New start state for DFA

– The set of all states reachable from the start state 

of the NFA using only edges labeled λλλλ

24

a,b,e,f

f

e

ba
λλλλ

λλλλ

λλλλ

NFA DFA



Conversion of NFAs to a DFAs

• For each state of the DFA corresponding to a set S of 

states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the set 

of states of the NFA reached by 
• starting from some state in S, then

• following one edge labeled by s, and

• then following some number of edges labeled by λ

– T will be ∅∅∅∅ if no edges from S labeled s exist
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Conversion of NFAs to a DFAs

• Final states for the DFA

– All states whose set contain some final state of the 

NFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Exponential blow-up in simulating 

nondeterminism

• In general the DFA might need a state for every 
subset of states of the NFA

– Power set of the set of states of the NFA

– n-state NFA yields DFA with at most 2n states

– We saw an example where roughly 2n is necessary

• Is the nth char from the end a 1?

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid of 
nondeterminism for polynomial-time algorithms

35


