CSE 311 Foundations of Computing I

Lecture 23 NFAs, Regular Expressions, and Equivalence with DFAs Spring 2013

Announcements

- Reading assignments
 7th Edition, Sections 13.3 and 13.4
 - $-\ 6^{th}$ Edition, Section 12.3 and 12.4

Last lecture highlights

Finite State Machines with output at states

State minimization

1

3

Last lecture highlights

2

Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 - Also can have edges labeled by empty string $\pmb{\lambda}$
- **Definition:** The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

6

8

Design an NFA with 4 states to recognize the set of binary strings whose 3rd from last character is a 1

7

Design an NFA to recognize the set of binary strings that contain 111 or have an even # of 1's

NFAs and Regular Expressions	Regular expressions over Σ
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.	 Basis: -Ø, λ are regular expressions -a is a regular expression for any a ∈ Σ Recursive step:
Proof idea: Structural induction based on the recursive definition of regular expressions	 If A and B are regular expressions then so are: (A \cup B) (AB)
Note: One can also find a regular expression to describe the language recognized by any NFA but we won't prove that fact	• A*
Basis	Basis
• Case Ø:	• Case Ø:

11

- Case λ:
- Case *a*:

• Case \emptyset : • Case λ : • Case a: • Case a:

Solution

(01 ∪1)*0

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Conversion of NFAs to a DFAs

- Proof Idea:
 - The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 - There will be one state in the DFA for each *subset* of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

- New start state for DFA
 - The set of all states reachable from the start state of the NFA using only edges labeled λ

21

22

Conversion of NFAs to a DFAs

- For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
 - Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by $\boldsymbol{\lambda}$
 - T will be \varnothing if no edges from S labeled **s** exist

25

27

Example: NFA to DFA

DFA

Conversion of NFAs to a DFAs

- Final states for the DFA
 - All states whose set contain some final state of the NFA

Example: NFA to DFA

NFA

26

Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - n-state NFA yields DFA with at most $2^{\rm n}$ states
 - We saw an example where roughly 2^{n} is necessary
 - Is the nth char from the end a 1?
- The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms