Announcements

CSE 311 Foundations of Computing I

Lecture 21
Finite State Machines
Spring 2013

Last lecture highlights

Directed graphs

Path: $v_{1}, v_{2}, \ldots, v_{k}$, with $\left(v_{i}, v_{i+1}\right)$ in E

- Reading assignments
$-7^{\text {th }}$ Edition, Sections 13.3 and 13.4
-6 ${ }^{\text {th }}$ Edition, Section 12.3 and 12.4

Last lecture highlights

Let R be a relation on $\operatorname{set} A$. There is a path of length n from a to b if and only if $(a, b) \in R^{n}$

Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path from a to b in R.

Transitive-Reflexive closure: Add the minimum possible number of edges to make the relation transitive and reflexive

The transitive-reflexive closure of a relation R is the connectivity relation R^{*}

Finite state machines

States

Transitions on inputs
Start state and final states
The language recognized by a machine is the set of strings that reach a final state

State	0	1
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{0}	s_{3}
s_{3}	s_{3}	s_{3}

Applications of Finite State Machines (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

Applications of Finite State Machines (a.k.a. Finite Automata)

- Formal verification of systems
- Is an unsafe state reachable?
- Computer games
- FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
- Text prediction
- Speech recognition

What language does this machine recognize?

3 Bit Shift register

How does the size of a DFA to recognize " $10^{\text {th }}$ character is a 1 " compare with the size of a DFA to recognize " $10^{\text {th }}$ character from the end is 1 "?

Strings over $\{0,1,2\}^{*}$

M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits mod 3 is 0

Recognize strings with an even number of 2 's and a mod 3 sum of 0

SWNIHKFRST Vending Machine
Buiterment

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, Version 1

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, Version 2

Adding output to states: N - Nickel, S - Snickers, B - Butterfinger

