CSE 311 Foundations of Computing I

Lecture 21 Finite State Machines Spring 2013

1

3

Announcements

Reading assignments

 7th Edition, Sections 13.3 and 13.4
 6th Edition, Section 12.3 and 12.4

Last lecture highlights Directed graphs

G = (V, E)V - vertices E - edges, order pairs of vertices

Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E

Last lecture highlights

2

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$

Let R be a relation on a set A. The connectivity relation R^* consists of the pairs (a,b) such that there is a path from a to b in R.

Transitive-Reflexive closure: Add the minimum possible number of edges to make the relation transitive and reflexive

The transitive-reflexive closure of a relation R is the connectivity relation R^*

Finite state machines

States

Transitions on inputs

Start state and final states

The language recognized by a machine is the set of strings that reach a final state

State	0	1
s ₀	s ₀	S ₁
S ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	s ₃

7

Applications of Finite State Machines (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems

 Components are communicating FSMs

- Applications of Finite State Machines (a.k.a. Finite Automata)
- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

What language does this machine recognize?

6

8

11

Design a DFA that accepts strings with a 1 three positions from the end

How does the size of a DFA to recognize "10th character is a 1" compare with the size of a DFA to recognize "10th character from the end is 1"?

State machines with output

	Input		Output
State	L	R	
S ₁	S_1	S ₂	Веер
s ₂	S_1	s ₃	
s ₃	s ₂	S ₄	
S ₄	s ₃	S ₄	Веер

"Tug-of-war"

15

Vending Machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, Version 2 Vending Machine, Version 1 0 D D 15 D Ν N, D 0 Ν 15 Ν 10 5 10 5 0 15 R Ν s B, S Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers) Adding output to states: N - Nickel, S - Snickers, B - Butterfinger 17 18 Vending Machine, Final Version B,S 0 B,S 15 B,S B,S D. S 0' N 5 10 R 15 N S B,S h N 0" S D