
CSE 311 Foundations of

Computing I

Lecture 19

Recursive Definitions:

Context-Free Grammars and Languages

Spring 2013

1

Announcements

• Reading assignments

– 7th Edition, pp. 851-855

– 6th Edition, pp. 789-793

• Today and Friday

– 7th Edition, Section 9.1 and pp. 594-601

– 6th Edition, Section 8.1 and pp. 541-548

2

Highlights …

Languages: Sets of Strings

• Sets of strings that satisfy special properties

are called languages. Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– Σ∗ = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s

3

Highlights…Regular expressions

• Regular expressions over Σ

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

• (A ∪ B)

• (AB)

• A*

4

Fact: Not all sets of strings can be specified

by regular expressions

• Even some easy things like

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in

programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– Etc.

5

Context Free Grammars

• A Context-Free Grammar (CFG) is given by a

finite set of substitution rules involving

– A finite set V of variables that can be replaced

– Alphabet ΣΣΣΣ of terminal symbols that can’t be

replaced

– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as

A → w1 | w2 | ... | wk where each wi is a string of

variables and terminals – that is wi ∈ (V ∪ ΣΣΣΣ)∗

6

How Context-Free Grammars generate

strings

• Begin with start symbol S

• If there is some variable A in the current string
you can replace it by one of the w’s in the
rules for A

– Write this as xAy ⇒ xwy

– Repeat until no variables left

• The set of strings the CFG generates are all
strings produced in this way that have no
variables

7

Sample Context-Free Grammars

• Example: S → 0S0 | 1S1 | 0 | 1 | λ

• Example: S → 0S | S1 | λ

8

Sample Context-Free Grammars

• Grammar for {0n1n : n≥ 0} all strings with

same # of 0’s and 1’s with all 0’s before 1’s.

• Example: S → ((((S)))) | SS | λ

9

Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

10

Context-Free Grammars and

recursively-defined sets of strings

• A CFG with the start symbol S as its only

variable recursively defines the set of strings

of terminals that S can generate

• A CFG with more than one variable is a

simultaneous recursive definition of the sets

of strings generated by each of its variables

– Sometimes necessary to use more than one

11

Building in Precedence in Simple

Arithmetic Expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E→ T | E+T

T→ F | F∗T

F→ (E) | I | N

I → x | y | z

N→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

12

Another name for CFGs

• BNF (Backus-Naur Form) grammars

– Originally used to define programming languages

– Variables denoted by long names in angle

brackets, e.g.

• <identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

• ::= used instead of →

13

BNF for C

14

Parse Trees

Back to middle school:

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

15

CSE 311 Foundations of

Computing I

Lecture 19 continued

Relations

Spring 2013

16

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

17

Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) | x ≡ y (mod 5) }

R3 = {(c1, c2) | c1 is a prerequisite of c2 }

R4 = {(s, c) | student s has taken course c }

18

Properties of Relations

Let R be a relation on A

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

19

/

