CSE 311 Foundations of Computing I

Lecture 19
Recursive Definitions:
Context-Free Grammars and Languages
Spring 2013

Highlights ... Languages: Sets of Strings

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $-\Sigma^*$ = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0's and 1's

Announcements

- Reading assignments
 - 7th Edition, pp. 851-855
 - 6th Edition, pp. 789-793
- Today and Friday
 - 7th Edition, Section 9.1 and pp. 594-601
 - 6th Edition, Section 8.1 and pp. 541-548

Highlights...Regular expressions

- Regular expressions over Σ
- Basis:
 - $-\emptyset$, λ are regular expressions
 - -a is a regular expression for any a ∈ Σ
- Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A*

Fact: Not all sets of strings can be specified by regular expressions

- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - Etc.

Context Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - A finite set **V** of *variables* that can be replaced
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - One variable, usually S, is called the start symbol
- The rules involving a variable **A** are written as
 - $A \rightarrow w_1 \mid w_2 \mid ... \mid w_k$ where each w_i is a string of variables and terminals that is $w_i \in (V \cup \Sigma)^*$

How Context-Free Grammars generate strings

- Begin with start symbol S
- If there is some variable A in the current string you can replace it by one of the w's in the rules for A
 - -Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Sample Context-Free Grammars

• Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \lambda$

• Example: $S \rightarrow 0S \mid S1 \mid \lambda$

7

Sample Context-Free Grammars

 Grammar for {0ⁿ1ⁿ : n≥ 0} all strings with same # of 0's and 1's with all 0's before 1's.

• Example: $S \rightarrow (S) \mid SS \mid \lambda$

Simple Arithmetic Expressions

E
$$\rightarrow$$
 E+E | E*E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Generate (2*x) + y

Generate x+y*z in two fundamentally different ways

10

Context-Free Grammars and recursively-defined sets of strings

- A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
 - Sometimes necessary to use more than one

Building in Precedence in Simple Arithmetic Expressions

- E expression (start symbol)
- T term F factor I identifier N number

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid F*T$$

$$F \rightarrow (E) \mid I \mid N$$

$$I \rightarrow x \mid y \mid z$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

12

Another name for CFGs

- BNF (Backus-Naur Form) grammars
 - Originally used to define programming languages
 - Variables denoted by long names in angle brackets, e.g.
 - <identifier>, <if-then-else-statement>,
 <assignment-statement>, <condition>
 - ::= used instead of \rightarrow

13

BNF for C

```
statement:
   ((identifier | "case" constant-expression | "default") ":")*
   (expression? ";" |
   block |
   "if" "(" expression ")" statement |
"if" "(" expression ")" statement "else" statement |
"switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
"do" statement "while" "(" expression ")" ";" |
    "for" "(" expression? ";" expression? ";" expression? ")" statement |
    "goto" identifier ";" |
    "continue" ";" |
    "break" ";" |
    "return" expression? ";"
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
     unary-expression (
              "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
       "^=" | "|="
  ) * conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

14

16

Parse Trees

Back to middle school:

<sentence>::=<noun phrase><verb phrase>
<noun phrase>::=<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

CSE 311 Foundations of Computing I

Relations
Spring 2013

15

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of A × A

Relation Examples

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}$$

$$R_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2 \}$$

17

Properties of Relations

Let R be a relation on A

R is reflexive iff $(a,a) \in R$ for every $a \in A$

R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is transitive iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$