Announcements

CSE 311 Foundations of Computing I

Lecture 19
Recursive Definitions:
Context-Free Grammars and Languages
Spring 2013

Highlights
 Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
- English sentences
- Syntactically correct Java/C/C++ programs
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names. keywords in Java/C/C++
- Binary strings with an equal \# of 0's and 1's
- Reading assignments
$-7^{\text {th }}$ Edition, pp. 851-855
$-6^{\text {th }}$ Edition, pp. 789-793
- Today and Friday
$-7^{\text {th }}$ Edition, Section 9.1 and pp. 594-601
$-6^{\text {th }}$ Edition, Section 8.1 and pp. 541-548

Highlights...Regular expressions

- Regular expressions over Σ
- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A^{*}

Fact: Not all sets of strings can be specified by regular expressions

- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- Etc.

Context Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set \mathbf{V} of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually S, is called the start symbol
- The rules involving a variable \mathbf{A} are written as $A \rightarrow w_{1}\left|w_{2}\right| \ldots \mid w_{k}$ where each w_{i} is a string of variables and terminals - that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

How Context-Free Grammars generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for A
-Write this as $\quad x A y \Rightarrow x w y$
-Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Sample Context-Free Grammars

- Example: $\mathbf{S} \rightarrow \mathbf{O S O} \mathbf{1 S} \mathbf{S}|0| 1 \mid \lambda$
- Example: $\mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \lambda$

Sample Context-Free Grammars

- Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$ all strings with same \# of 0's and 1's with all O's before 1's.
- Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \lambda$

Simple Arithmetic Expressions

$\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}|(\mathbf{E})|\mathrm{x}| \mathrm{y}|\mathrm{z}| 0|1| 2|3| 4|5|$
6|7|8|9
Generate $(2 * x)+y$

Generate $x+y * z$ in two fundamentally different ways

Context-Free Grammars and

 recursively-defined sets of strings- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables - Sometimes necessary to use more than one

Building in Precedence in Simple Arithmetic Expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number
$\mathrm{E} \rightarrow \mathbf{T} \mid \mathrm{E}+\mathbf{T}$
$T \rightarrow F \mid F * T$
$\mathrm{F} \rightarrow(\mathrm{E})|\mathrm{I}| \mathrm{N}$
$I \rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Another name for CFGs

- BNF (Backus-Naur Form) grammars
- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
- <identifier>, <if-then-else-statement>, <assignment-statement>, <condition>
- ::= used instead of \rightarrow

BNF for C

```
tatement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression?
    block \
    "if" "(" expression ")" statement |
    "switch" "(" expression ")" statement
    "while" "(" expression ")" statement
    do" statement "while" "(" expression ")" ";"
    "for" "(" expression? ";" expression? ";" expression? ")" statement
    #ntifier ";"
    "continue" ";"
    "break" ";"
    return" expression? ";"
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
        unary-expression
        ==" | |==" |
        *) conditional-expression
```

conditional-expression:
logical-OR-expression ("?" expression ":" conditional-expression)?

CSE 311 Foundations of Computing I

Lecture 19 continued
Relations
Spring 2013

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Properties of Relations

Let R be a relation on A
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$

R is transitive iff $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$ implies $(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$

Relation Examples

$$
\begin{aligned}
& R_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& R_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\} \\
& R_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \text { is a prerequisite of } c_{2}\right\} \\
& R_{4}=\{(s, c) \mid \text { student } s \text { has taken course } c\}
\end{aligned}
$$

