CSE 311 Foundations of
Computing |

Announcements

* Reading assignments
— 7t Edition, pp. 851-855
— 6t Edition, pp. 789-793
* Today and Friday
— 7th Edition, Section 9.1 and pp. 594-601
— 6t Edition, Section 8.1 and pp. 541-548

Highlights ...
Languages: Sets of Strings

» Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— X" = All strings over alphabet ¥
— Palindromes over X
— Binary strings that don’t have a 0 aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of 0’s and 1’s

Highlights...Regular expressions

* Regular expressions over X
* Basis:
— @, A are regular expressions
—ais aregular expression foranya e X
* Recursive step:
— If A and B are regular expressions then so are:
* (AUB)
* (AB)
o A*

Fact: Not all sets of strings can be specified
by regular expressions

e Even some easy things like
— Palindromes
— Strings with equal number of 0’s and 1’s
* But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— Etc.

Context Free Grammars

* A Context-Free Grammar (CFG) is given by a
finite set of substitution rules involving
— A finite set V of variables that can be replaced

— Alphabet X of terminal symbols that can’t be
replaced

— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as

A—w, | w,|..|w,whereeach w,is a string of
variables and terminals — that is w, € (V U X)*

How Context-Free Grammars generate
strings

* Begin with start symbol S

* |If there is some variable A in the current string
you can replace it by one of the w’s in the
rules for A
—Write this as xAy = xwy
—Repeat until no variables left

* The set of strings the CFG generates are all
strings produced in this way that have no
variables

Sample Context-Free Grammars

* Example: S—0SO0|1S1|0|1]|A

* Example: S—0S|S1]|A

Sample Context-Free Grammars

* Grammar for {0"1" : n> 0} all strings with
same # of 0’s and 1’s with all 0’s before 1’s.

* Example: S—(S)|SS | A

Simple Arithmetic Expressions
E>E+E|ExE| (E) | x|y |z|0]|1]|2]|3]|4]|5]

617|819
Generate (2*x) +vy

Generate x+y*z in two fundamentally different ways

Context-Free Grammars and
recursively-defined sets of strings

* A CFG with the start symbol S as its only
variable recursively defines the set of strings
of terminals that S can generate

* A CFG with more than one variable is a
simultaneous recursive definition of the sets
of strings generated by each of its variables
— Sometimes necessary to use more than one

Building in Precedence in Simple
Arithmetic Expressions

* E—expression (start symbol)

* T—term F-—factor I-identifier N - number
E>T|E+T
T— F | FxT
F>(E)|I|N
l->x|y]z
N—>O0|1]|2|3]4|5|6]7]|8]|9

Another name for CFGs BNF for C

statement:
tisier | measen N fon | Mdefaultn) minys
* BNF (Backus-Naur Form) grammars (xprassions min 1
block
o . . . "igf "(" expression ")" statement |
— Originally used to define programming languages "iEn (" cxpression ")" statement "elss” statement |
"switch" " (" expression ")" statement |
. . "while™ " (" i ")" stat t
— Variables denoted by long names in angle "dan statemens mwhilen "(" cxpression)" "in |
"for™ " (" expression? ";" expression? ";" expression? ")" statement |
brackets, e.g. \gorol ddemrifier Uit |
. . . "break" ";" |
* <identifier>, <if-then-else-statement>, "return” expressicn? ";"
. ..)
<assignment-statement>, <condition> Pdocks i dmctasets carements "
ock: eclaration* statement* "}"
e ::= used instead of — sxpression:

assignment-expression%

assignment-expression: (
unary-expression (
mom | omwmn | mgom | omgom | myow n_om | mggmm | mynom | mgon
mam | om
)
}* conditional-expression

conditional-expression:
logical-OR-expression ("?" expression ":" conditional-expression }?

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase> CSE 311 Foundations Of

<noun phrase>::=<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object> Computing |
<object>::=<noun phrase>
Lecture 19 continued
Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

Relations
Spring 2013

Definition of Relations

Let A and B be sets,
A binary relation from Ato B is a subset of Ax B

Let A be a set,
A binary relation on Ais a subset of Ax A

Relation Examples

Rl = {(a, 1)1 (al 2)1 (bl 1)1 (bl 3)1 (CI 3)}
R, ={(x,y) | x=y(mod 5) }
R; ={(cy, ¢,) | ¢, is a prerequisite of ¢, }

R, =1{(s,) | student s has taken course c }

Properties of Relations

Let R be a relation on A

R is reflexive iff (a,a) € R foreveryae A

R is symmetric iff (a,b) € R implies (b, a)e R

R is antisymmetric iff (a,b) € R and a # b implies (b,a) ¢ R

R is transitive iff (a,b)e R and (b, c)e R implies (a, c) € R

