CSE 311 Foundations of
Computing |

Announcements

* Reading assignments
— 7t Edition, pp. 878-880 and pp. 851-855
— 6t Edition, pp. 817-819 and pp. 789-793

* For Wednesday, May 15
— 7th Edition, Section 9.1 and pp. 594-601
— 6t Edition, Section 8.1 and pp. 541-548

Languages: Sets of Strings

» Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— X* = All strings over alphabet ¥
— Palindromes over X
— Binary strings that don’t have a 0 aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of 0’'s and 1’s

Regular expressions

* Regular expressions over X
* Basis:
— @, A are regular expressions
—ais aregular expression foranya e X
* Recursive step:
— If A and B are regular expressions then so are:
* (AUB)
* (AB)
o A*

Each regular expression is a “pattern”

* A matches the empty string
* a matches the one character string a

(A U B) matches all strings that either A
matches or B matches (or both)

(AB) matches all strings that have a first part
that A matches followed by a second part that
B matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples
 001%

o 0%1%
e (Ou1)00U 1)0
. (0*1%)*

. (0U1)*0110 (0L 1)*

e (00U 11)* (01010 L 10001)(0 L 1)*

Regular expressions in practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* Pattern matching using regular expressions is an essential
feature of hypertext scripting language PHP used for web
programming

— Also in text processing programming language Perl

Regular Expressions in PHP

* int preg_match (string Spattern , string Ssubject,...)
» Spattern syntax:
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (AU B)
a? zero or one of a (AUA)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+1?2[0-9]1*(\.|\,)?[0-9]+5
General form of decimal number e.g. 9.12 or -9,8 (Europe)

More examples

* All binary strings that have an even # of 1’s

* All binary strings that don’t contain 101

Fact: Not all sets of strings can be specified
by regular expressions

e Even some easy things like
— Palindromes
— Strings with equal number of 0’s and 1’s
* But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— Etc.

Context Free Grammars

* A Context-Free Grammar (CFG) is given by a
finite set of substitution rules involving
— A finite set V of variables that can be replaced

— Alphabet X of terminal symbols that can’ t be
replaced

— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as

A—w, | w,|..|w,whereeach w;is a string of
variables and terminals — that is w, € (V U X)*

How Context-Free Grammars generate
strings

* Begin with start symbol S

* |f there is some variable A in the current string
you can replace it by one of the w’ s in the
rules for A
—Write this as xAy = xwy
—Repeat until no variables left

* The set of strings the CFG generates are all
strings produced in this way that have no
variables

Sample Context-Free Grammars

 Example: S—0SO0|1S1|0|1]|A

* Example: S—0S|S1]|A

Sample Context-Free Grammars

* Grammar for {0"1" : n> 0} all strings with
same # of O’s and 1’s with all 0’s before 1’s.

* Example: S—(S)|SS | A

Simple Arithmetic Expressions
E>E+E|ExE| (E) | x|y |z|0]|1]|2]|3]|4]|5]

617|819
Generate (2*x) +vy

Generate x+y*z in two fundamentally different ways

Context-Free Grammars and
recursively-defined sets of strings

* A CFG with the start symbol S as its only
variable recursively defines the set of strings
of terminals that S can generate

* A CFG with more than one variable is a
simultaneous recursive definition of the sets
of strings generated by each of its variables
— Sometimes necessary to use more than one

Building in Precedence in Simple
Arithmetic Expressions

* E—expression (start symbol)
* T—-term F-—factor |-identifier N-number

E->T|E+T

T— F | FxT

F>(E)|I|N

l->x|y|z
N—>O0|1]|2|3]4|5|6]7]|8]|9

Another name for CFGs

* BNF (Backus-Naur Form) grammars
— Originally used to define programming languages
— Variables denoted by long names in angle

brackets, e.g.

 <identifier>, <if-then-else-statement>,
<assighment-statement>, <condition>

e ::= used instead of —

BNF for C

statement:
((identifier | "case" constant-expression | "default") ":")¥
(expression? ";" |

)

block

"if" " (" expression ")" statement |

"if"™ " (" expressicn ")" statement "else" statsment |

"switch" " (" expressiocn ")" statement |

"while" " (" expression ")" statemsnt |

"do" statement "while" " (" expression ")}" ";" |

"for™ " (" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";" |

"continue™ ";" |

"break" ";" |
"return" expression? ";"

block: "{" declaration* statement® "}"

expression:
assignment-expressicn$

assignment-expression: (

unary-expression (
men | mk=n | omy=n | omgem | owy—w no=n | omggmm | mum=n | mgmn
= | n=

)

)* conditicnal-expression

conditional-expression:
logical-OR-expression ("2" expression ":" conditional-expression)?

Parse Trees

Back to middle school:

<sentence>::=<noun phrase><verb phrase>
<noun phrase>::=<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

