
CSE 311 Foundations of

Computing I

Lecture 18

Recursive Definitions: Regular Expressions,

Context-Free Grammars and Languages

Spring 2013

1

Announcements

• Reading assignments

– 7th Edition, pp. 878-880 and pp. 851-855

– 6th Edition, pp. 817-819 and pp. 789-793

• For Wednesday, May 15

– 7th Edition, Section 9.1 and pp. 594-601

– 6th Edition, Section 8.1 and pp. 541-548

2

Languages: Sets of Strings

• Sets of strings that satisfy special properties

are called languages. Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– Σ∗ = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s

3

Regular expressions

• Regular expressions over Σ

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

• (A ∪ B)

• (AB)

• A*

4

Each regular expression is a “pattern”

• λλλλ matches the empty string

• a matches the one character string a

• (A ∪ B) matches all strings that either A
matches or B matches (or both)

• (AB) matches all strings that have a first part
that A matches followed by a second part that
B matches

• A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

5

Examples
• 001*

• 0*1*

• (0 ∪ 1)0(0 ∪ 1)0

• (0*1*)*

• (0 ∪ 1)* 0110 (0 ∪ 1)*

• (00 ∪ 11)* (01010 ∪ 10001)(0 ∪ 1)*

6

Regular expressions in practice

• Used to define the “tokens”: e.g., legal variable names,

keywords in programming languages and compilers

• Used in grep, a program that does pattern matching

searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential

feature of hypertext scripting language PHP used for web

programming

– Also in text processing programming language Perl

7

Regular Expressions in PHP
• int preg_match (string $pattern , string $subject,...)

• $pattern syntax:

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a (A ∪ λλλλ)

a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

8

More examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

9

Fact: Not all sets of strings can be specified

by regular expressions

• Even some easy things like

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in

programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– Etc.

10

Context Free Grammars

• A Context-Free Grammar (CFG) is given by a

finite set of substitution rules involving

– A finite set V of variables that can be replaced

– Alphabet ΣΣΣΣ of terminal symbols that can’t be

replaced

– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as

A → w1 | w2 | ... | wk where each wi is a string of

variables and terminals – that is wi ∈ (V ∪ ΣΣΣΣ)∗

11

How Context-Free Grammars generate

strings

• Begin with start symbol S

• If there is some variable A in the current string
you can replace it by one of the w’s in the
rules for A

– Write this as xAy ⇒ xwy

– Repeat until no variables left

• The set of strings the CFG generates are all
strings produced in this way that have no
variables

12

Sample Context-Free Grammars

• Example: S → 0S0 | 1S1 | 0 | 1 | λ

• Example: S → 0S | S1 | λ

13

Sample Context-Free Grammars

• Grammar for {0n1n : n≥ 0} all strings with

same # of 0’s and 1’s with all 0’s before 1’s.

• Example: S → ((((S)))) | SS | λ

14

Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

15

Context-Free Grammars and

recursively-defined sets of strings

• A CFG with the start symbol S as its only

variable recursively defines the set of strings

of terminals that S can generate

• A CFG with more than one variable is a

simultaneous recursive definition of the sets

of strings generated by each of its variables

– Sometimes necessary to use more than one

16

Building in Precedence in Simple

Arithmetic Expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E→ T | E+T

T→ F | F∗T

F→ (E) | I | N

I → x | y | z

N→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

17

Another name for CFGs

• BNF (Backus-Naur Form) grammars

– Originally used to define programming languages

– Variables denoted by long names in angle

brackets, e.g.

• <identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

• ::= used instead of →

18

BNF for C

19

Parse Trees

Back to middle school:

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

20

