CSE 311 Foundations of Computing I

Lecture 17
Structural Induction
Spring 2013

Announcements

- Reading assignments
- Today and Monday:
- $7^{\text {th }}$ Edition, Section 5.3 and pp. 878-880
- $6^{\text {th }}$ Edition, Section 4.3 and pp. 817-819
- Midterm Friday, May 10, MGH 389
- Closed book, closed notes
- Tables of inference rules and equivalences will be included on test
- Sample questions from old midterms are now posted

Highlight from last time...

Recursive Definitions of Set S

- Recursive definition
- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S .
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Highlight from last time... Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in \Sigma^{*}$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Highlight from last time...
Functions on recursively defined sets
len $(\lambda)=0$;
len $(w a)=1+\operatorname{len}(w) ;$ for $w \in \Sigma^{*}, a \in \Sigma$

Reversal:
$\lambda^{R}=\lambda$
$(w a)^{R}=a w^{R}$ for $w \in \Sigma^{*}, a \in \Sigma$
Concatenation:
$x \cdot \lambda=x$ for $x \in \Sigma^{*}$
$x \bullet w a=(x \cdot w) a$ for $x, w \in \Sigma^{*}, a \in \Sigma$

Highlight from last time... Rooted Binary trees

- Basis: - is a rooted binary tree
- Recursive Step:

binary trees then so is:

Structural Induction: Proving properties of recursively defined sets
How to prove $\forall x \in S . P(x)$ is true:

1. Let $P(x)$ be "...". We will prove $P(x)$ for all $x \in S$
2. Base Case: Show that P is true for all specific elements of S mentioned in the Basis step
3. Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
4. Inductive Step: Prove that P holds for each of the new elements constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis
5. Conclude that $\forall x \in S$. $P(x)$

Structural Induction versus

Ordinary Induction

- Ordinary induction is a special case of structural induction:
- Recursive Definition of \mathbb{N}
- Basis: $0 \in \mathbb{N}$
- Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$
- Structural induction follows from ordinary induction
- Let $Q(n)$ be true iff for all $x \in S$ that take n Recursive steps to be constructed, $\mathrm{P}(\mathrm{x})$ is true.

Using Structural Induction

- Let S be given by
- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$, then $x+y \in S$.
- Claim: Every element of S is divisible by 3

Using Structural Induction

- Let S be a set of strings over $\{\mathrm{a}, \mathrm{b}\}$ defined as follows
- Basis: $a \in S$
- Recursive:
- If $u \in S$ then $a u \in S$ and bau $\in S$
- If $u \in S$ and $v \in S$ then $u v \in S$
- Claim: if $x \in S$ then x has more a's than b's
len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all strings x and y
Let $P(w)$ be "For all strings x, len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ "

For every rooted binary tree T $\operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
- English sentences
- Syntactically correct Java/C/C++ programs
- All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names. keywords in Java/C/C++
- Binary strings with an equal \# of 0's and 1's

Regular Expressions over Σ

- Each is a "pattern" that specifies a set of strings
- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(\mathbf{A} \cup \mathbf{B})$
- (AB)
- A*

Each regular expression is a "pattern"

- λ matches the empty string
- \boldsymbol{a} matches the one character string a
- $(\mathbf{A} \cup \mathbf{B})$ matches all strings that either \mathbf{A} matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Examples

- 0^{*}
- 0*1*
- $(0 \cup 1)^{*}$
- $\left(0^{*} 1^{*}\right)^{*}$
- $(0 \cup 1)^{*} 0110(0 \cup 1)^{*}$
- $(0 \cup 1)^{*}(0110 \cup 100)(0 \cup 1)^{*}$

Regular expressions in practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of hypertext scripting language PHP used for web programming
- Also in text processing programming language Perl

Regular Expressions in PHP

- int preg_match (string \$pattern , string \$subject,...)
- \$pattern syntax:
[01] a 0 or a 1 ^ start of string \$ end of string
[0-9] any single digit \backslash. period \backslash, comma \backslash-minus
any single character
ab a followed by b (AB)
$(a \mid b)$ orb $\quad(A \cup B)$
a ? zero or one of a $\quad(A \cup \lambda)$
a* zero or more of a A*
a+ one or more of a $\mathbf{A A}^{*}$
- e.g. ^[\-+]? [0-9]* (\. $\$,) ? $[0-9]+\$$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

More examples

- All binary strings that have an even \# of 1's
- All binary strings that don't contain 101

Regular expressions can't specify everything we might want

- Fact: Not all sets of strings can be specified by regular expressions
-One example is the set of binary strings with equal \#'s of 0's and 1's

