CSE 311 Foundations of Computing I

Lecture 17
Structural Induction
Spring 2013

Highlight from last time... Recursive Definitions of Set S

- Recursive definition
 - Basis step: Some specific elements are in S
 - Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Announcements

- Reading assignments
 - Today and Monday:
 - 7th Edition, Section 5.3 and pp. 878-880
 - 6th Edition, Section 4.3 and pp. 817-819
- Midterm Friday, May 10, MGH 389
 - Closed book, closed notes
 - Tables of inference rules and equivalences will be included on test
 - Sample questions from old midterms are now posted

2

Highlight from last time... Strings

- An *alphabet* Σ is any finite set of characters.
- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** $\lambda \in \Sigma^*$ (λ is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Highlight from last time... Functions on recursively defined sets

len
$$(\lambda) = 0$$
;
len $(wa) = 1 + len(w)$; for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\begin{array}{l} \lambda^R = \lambda \\ (wa)^R = aw^R \text{ for } w \in \Sigma^\star, \, a \in \, \Sigma \end{array}$$

Concatenation:

$$x \bullet \lambda = x \text{ for } x \in \Sigma^*$$

$$x \bullet wa = (x \bullet w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$$

Highlight from last time... Functions defined on rooted binary trees

• size(•)=1

• size
$$(T_1)$$
 = 1+size (T_1) +size (T_2)

• height(•)=0

• height(
$$T_1$$
)=1+max{height(T_1),height(T_2)}

Highlight from last time... Rooted Binary trees

• Basis: • is a rooted binary tree

• Recursive Step: If T_1 and T_2 are rooted

binary trees then so is:

Structural Induction: Proving properties of recursively defined sets

How to prove $\forall x \in S$. P(x) is true:

- 1. Let P(x) be "...". We will prove P(x) for all $x \in S$
- **2. Base Case:** Show that P is true for all specific elements of S mentioned in the *Basis step*
- **3. Inductive Hypothesis:** Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the *Recursive step*
- **4. Inductive Step:** Prove that P holds for each of the new elements constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis
- 5. Conclude that $\forall x \in S$. P(x)

)

Structural Induction versus Ordinary Induction

- Ordinary induction is a special case of structural induction:
 - Recursive Definition of N

• Basis: $0 \in \mathbb{N}$

• Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

- Structural induction follows from ordinary induction
 - Let Q(n) be true iff for all x∈S that take n Recursive steps to be constructed, P(x) is true.

Using Structural Induction

• Let S be given by

- Basis: $6 \in S$; $15 \in S$;

– Recursive: if $x, y \in S$, then $x + y \in S$.

• Claim: Every element of S is divisible by 3

9

Using Structural Induction

- Let S be a set of strings over {a,b} defined as follows
 - Basis: a ∈ S
 - Recursive:
 - If $u \in S$ then $au \in S$ and $bau \in S$
 - If $u \in S$ and $v \in S$ then $uv \in S$
- Claim: if $x \in S$ then x has more a's than b's

$len(x \cdot y) = len(x) + len(y)$ for all strings x and y

Let P(w) be "For all strings x, $len(x \cdot w) = len(x) + len(w)$ "

For every rooted binary tree T $size(T) \le 2^{height(T)+1}-1$

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - All strings over alphabet $\,\Sigma\,$
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0's and 1's

13

Regular Expressions over Σ

- Each is a "pattern" that specifies a set of strings
- Basis:
 - $-\emptyset$, λ are regular expressions
 - -a is a regular expression for any a ∈ Σ
- Recursive step:
 - If **A** and **B** are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A*

Each regular expression is a "pattern"

- λ matches the empty string
- a matches the one character string a
- (A ∪ B) matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

. .

Examples

- 0*
- · 0*1*
- (0 ∪ 1)*
- · (0*1*)*
- $(0 \cup 1) * 0110 (0 \cup 1) *$
- $(0 \cup 1)$ * $(0110 \cup 100)(0 \cup 1)$ *

Regular expressions in practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of hypertext scripting language PHP used for web programming
 - Also in text processing programming language Perl

Regular Expressions in PHP

- int preg_match (string \$pattern , string \$subject,...)
- \$pattern syntax:

[01] a 0 or a 1 ^ start of string \$ end of string

[0-9] any single digit \. period \, comma \- minus

any single character

ab a followed by b (AB)

(a|b) a or b $(A \cup B)$

a? zero or one of a $(A \cup \lambda)$

a* zero or more of a A*

a+ one or more of a AA*

e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+\$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)

More examples

• All binary strings that have an even # of 1's

All binary strings that don't contain 101

Regular expressions can't specify everything we might want

- Fact: Not all sets of strings can be specified by regular expressions
 - One example is the set of binary strings with equal #'s of 0's and 1's

