CSE 311 Foundations of
Computing |

Announcements

* Reading assignments

— Today and Monday:
« 7t Edition, Section 5.3 and pp. 878-880
« 6t Edition, Section 4.3 and pp. 817-819

* Midterm Friday, May 10, MGH 389
— Closed book, closed notes

— Tables of inference rules and equivalences will be
included on test

— Sample questions from old midterms are now posted

Highlight from last time...
Recursive Definitions of Set S

* Recursive definition
— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed from
these named elements are also in S.

— Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive steps

Highlight from last time...
Strings
* An alphabet X is any finite set of characters.

* The set X* of strings over the alphabet X is
defined by
— Basis: A€ X* (Ais the empty string)
— Recursive: ifwe X* ae X, thenwae X*

Highlight from last time...
Functions on recursively defined sets

len (A) = 0;

len (wa) =1 + len(w); forwe X*,ae X

Reversal:
AR=A
(wa)R=awRforwe X*,ae X

Concatenation:
XeA=Xforxe X*
xewa=(X*w)aforx,we X*ae X

Highlight from last time...
Rooted Binary trees

* Basis: ¢ isarooted binary tree

." :.."‘
* Recursive Step: If 7_ ™ and:_ * are rooted
4:...-.I.-;l....“| :: TZ “‘
binary trees
then so is: Y
4.:....I:J-...:|] TZ

Highlight from last time...
Functions defined on rooted binary trees

size(e)=1

size(._:r<\,~'T=\) = 1+size(T,)+size(T,)
R 3 ;: 2‘2

height(e)=0

height(:‘/\:\)=1+max{height(T,),height(T,)}
ST Tz

CLELLLEL T

Structural Induction: Proving
properties of recursively defined sets

How to prove VxES. P(x) is true:
1. Let P(x) be “...”. We will prove P(x) for all x€S

2. Base Case: Show that P is true for all specific
elements of S mentioned in the Basis step

3. Inductive Hypothesis: Assume that P is true for
some arbitrary values of each of the existing named
elements mentioned in the Recursive step

4. Inductive Step: Prove that P holds for each of
the new elements constructed in the Recursive step
using the named elements mentioned in the
Inductive Hypothesis

5. Conclude that Vx€S. P(x)

Structural Induction versus
Ordinary Induction

* Ordinary induction is a special case of
structural induction:
— Recursive Definition of N
* Basis: 0EN
* Recursive Step: If k € N then k+1 €N
* Structural induction follows from ordinary
induction

* Let Q(n) be true iff for all x€S that take n Recursive
steps to be constructed, P(x) is true.

Using Structural Induction

* Let S be given by
—Basis: 6 S; 15€ S;
— Recursive: ifx,ye S, thenx+ye S.

* Claim: Every element of S is divisible by 3

Using Structural Induction

* Let S be a set of strings over {a,b} defined as
follows
— Basis: a €S

— Recursive:
e fueSthenau€eSandbau€Ss
e [fueSandv ESthenuv€ES

* Claim: if x € S then x has more a’s than b’s

len(xey)=len(x)+len(y) for all strings x and y

Let P(w) be “For all strings x, len(xew)=len(x)+len(w)”

For every rooted binary tree T
size(T) < 2height(T)+1 _q

Languages: Sets of Strings

* Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a 0 aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of 0’s and 1’s

Regular Expressions over X

* Each is a “pattern” that specifies a set of strings
* Basis:
— @, A are regular expressions
—ais aregular expression foranya e X
* Recursive step:
— If A and B are regular expressions then so are:
* (AUB)
* (AB)
o A*

Each regular expression is a “pattern”

A matches the empty string
a matches the one character string a

(A U B) matches all strings that either A
matches or B matches (or both)

(AB) matches all strings that have a first part
that A matches followed by a second part that
B matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples
° 0*
. 0*1*

e (OUI1)*

- (0U1)*0110 (0L 1)*

e (Ou1)*(0110 L 100)(0L 1)*

Regular expressions in practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

* Pattern matching using regular expressions is an essential
feature of hypertext scripting language PHP used for web
programming

— Also in text processing programming language Perl

Regular Expressions in PHP

* int preg_match (string Spattern , string Ssubject,...)
* Spattern syntax:
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (AU B)
a? zero or one of a (AUA)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+1?2[0-9]1*(\.|\,)?[0-9]+5
General form of decimal number e.g. 9.12 or-9,8 (Europe)

More examples

* All binary strings that have an even # of 1’s

* All binary strings that don’t contain 101

Regular expressions can’t specify
everything we might want

* Fact: Not all sets of strings can be
specified by regular expressions

—One example is the set of binary strings
with equal #s of 0's and 1’s

