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Announcements

• Reading assignments

– Today: 

• 5.3   7th Edition

• 5.3   6th Edition

• Midterm Friday, May 10, MGH 389

– Closed book, closed notes

– Tables of inference rules and equivalences will be 
included on test

– Sample questions from old midterms are now posted
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Induction

• Mathematical Induction

• Induction proof layout:

1. Let P(n) be “   “.  By induction we will show that P(n) is true for 
every n≥0

2. Base Case: Prove P(0)

3. Inductive Hypothesis: Assume that P(k) is true for 
some arbitrary integer k ≥ 0

4. Inductive Step: Prove that P(k+1) is true using Inductive 
Hypothesis that P(k) is true

5. Conclusion: Result follows by induction

P(0)

∀ k≥0 (P(k) → P(k+1))

∴ ∀ n≥0  P(n)
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Strong Induction
P(0)
∀∀∀∀ k (∀∀∀∀ j ((0≤j ≤k) → P(j)) → P(k+1))

∴ ∀∀∀∀ n P(n)

• Strong Induction proof layout:

1. Let P(n) be “…”.  By induction we will show that P(n) is true for 
every n≥0

2. Base Case: Prove P(0)

3. Inductive Hypothesis: Assume that for some arbitrary integer 
k ≥ 0 we have P(j) true for every integer j 
with 0 ≤ j ≤ k.

4. Inductive Step: Prove that P(k+1) is true using Inductive 
Hypothesis that P(0),…,P(k) are true

5. Conclusion: Result follows by induction
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Bounding the Fibonacci Numbers
How we did it last time

f0 = 0; f1 = 1; fn = fn-1 + fn-2 for all n≥ 2

Theorem:   2n/2-1 ≤ fn < 2n for all n ≥ 2

Proof: 

1.  Let P(n) be “2n/2-1 ≤ fn < 2n.   By (strong) induction we prove P(n) for all n ≥ 2.

2. Base Case:  … P(2) is true, … P(3) is true

3. Ind.Hyp:  Assume 2j/2-1 ≤ fj<2j for all integers j with 2 ≤ j ≤ k for … k ≥ 3.

4. Ind. Step:   Goal:  Show 2(k+1)/2-1 ≤ fk+1 < 2k+1

fk+1 = fk + fk-1 ≥ 2k/2-1 + 2(k-1)/2 – 1 by I.H. since k-1 ≥ 2

> 2(k-1)/2-1 + 2(k-1)/2 – 1 = 2∙2(k-1)/2-1 = 2(k+1)/2 – 1

fk+1 = fk + fk-1 < 2k + 2(k-1) by I.H. since k-1 ≥ 2

< 2k + 2k = 2∙2k = 2k+1
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Bounding the Fibonacci Numbers
Alternative Layout

f0 = 0; f1 = 1; fn = fn-1 + fn-2 for all n≥ 2

Theorem:   2n/2-1 ≤ fn < 2n for all n ≥ 2

Proof: 

1.  Let P(n) be “2n/2-1 ≤ fn < 2n.   By (strong) induction we prove P(n) for all n ≥ 2.

2. Base Case:  … P(2) is true

3. Ind.Hyp:  Assume 2j/2-1 ≤ fj<2j for all integers j with 2 ≤ j ≤ k for … k ≥ 2.

4. Ind. Step:      Goal:  Show 2(k+1)/2-1 ≤ fk+1 < 2k+1

Case k=2: … P(3) is true

Case k≥3: fk+1 = fk + fk-1 ≥ 2k/2-1 + 2(k-1)/2 – 1 by I.H. since k-1 ≥ 2

> 2(k-1)/2-1 + 2(k-1)/2 – 1 = 2∙2(k-1)/2-1 = 2(k+1)/2 – 1

fk+1 = fk + fk-1 < 2k + 2(k-1) by I.H. since k-1 ≥ 2

< 2k + 2k = 2∙2k = 2k+1
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Recursive Definitions of Sets

• Recursive definition

– Basis step:  0 ∈ S

– Recursive step:  if x ∈ S, then x + 2 ∈ S

– Exclusion rule:  Every element in S follows from 

basis steps and a finite number of recursive steps
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Recursive definitions of sets

Basis:   6 ∈ S;  15 ∈ S;

Recursive:  if x, y ∈ S, then x + y ∈ S;

Basis: [1, 1, 0] ∈ S, [0, 1, 1] ∈ S;

Recursive: 

if [x, y, z] ∈ S,  α in ℝ,  then [α x, α y, α z] ∈ S

if [x1, y1, z1], [x2, y2, z2] ∈ S  

then [x1 + x2, y1 + y2, z1 + z2] ∈ S

Powers of 3
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Recursive Definitions of Sets:

General Form

• Recursive definition

– Basis step: Some specific elements are in S 

– Recursive step: Given some existing named 

elements in S some new objects constructed from 

these named elements are also in S.

– Exclusion rule:  Every element in S follows from 

basis steps and a finite number of recursive steps
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Strings

• An alphabet Σ is any finite set of characters.

• The set Σ* of strings over the alphabet Σ is 

defined by

– Basis:  λ ∈ Σ*  (λ is the empty string)

– Recursive:  if w ∈ Σ*, a ∈ Σ, then wa ∈ Σ*
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Palindromes

• Palindromes are strings that are the same 

backwards and forwards

• Basis:  λ is a palindrome and any a ∈ Σ is a 

palindrome

• Recursive step: If p is a palindrome then apa is  

a palindrome for every a ∈ Σ
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All binary strings with no 1’s before 0’s
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Function definitions on recursively 

defined sets

len (λ) = 0;

len (wa) = 1 + len(w); for w ∈ Σ*, a ∈ Σ

Reversal:

λR = λ

(wa)R = awR for w ∈ Σ*, a ∈ Σ

Concatenation:

x • λ = x for x ∈ Σ*

x • wa = (x • w)a for x, w ∈ Σ*, a ∈ Σ
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Rooted Binary trees

• Basis:   •  is a rooted binary tree

• Recursive Step:   If             and          are rooted 

binary trees                                                            

then so is:   
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T1 T2

T1 T2

Functions defined on rooted binary trees

• size(•)=1

• size(              ) = 1+size(T1)+size(T2)

• height(•)=0

• height(             )=1+max{height(T1),height(T2)}
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T1 T2

T1 T2

Structural Induction: proving 

properties of recursively defined sets

How to prove ∀∀∀∀x∈S. P(x) is true:

•Base Case: Show that P is true for all specific 
elements of S mentioned in the Basis step

•Inductive Hypothesis: Assume that P is true for 
some arbitrary values of each of the existing named 
elements mentioned in the Recursive step

•Inductive Step: Prove that P holds for each of the 
new elements constructed in the Recursive step
using the named elements mentioned in the 
Inductive Hypothesis

•Conclude that ∀∀∀∀x∈S. P(x)
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Structural Induction versus

Ordinary Induction

• Ordinary induction is a special case of 
structural induction:

– Recursive Definition of ℕ

• Basis:   0 ∈	�

• Recursive Step:  If k ∈	� then k+1 ∈	�

• Structural induction follows from ordinary 
induction

• Let Q(n) be true iff for all x∈S that take n Recursive 
steps to be constructed, P(x) is true.
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Using Structural Induction

• Let S be given by

– Basis:   6 ∈ S;  15 ∈ S;

– Recursive:  if x, y ∈ S, then x + y ∈ S.

• Claim:  Every element of S is divisible by 3
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Structural Induction for strings

• Let S be a set of strings over {a,b} defined as 

follows

– Basis:  a ∈ S

– Recursive:

• If w ∈	S then aw ∈	S and baw ∈	S

• If u ∈	S and v ∈	S then uv ∈	S

• Claim: if w ∈	S then w has more a’s than b’s
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len(x•y)=len(x)+len(y) for all strings x and y
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Let P(w) be “len(x•w)=len(x)+len(w)”


