CSE 311 Foundations of Computing I

Lecture 16

Recursively Defined Sets and Structural Induction

Spring 2013

Announcements

- Reading assignments
- Today:
- $5.37^{\text {th }}$ Edition
- $5.36^{\text {th }}$ Edition
- Midterm Friday, May 10, MGH 389
- Closed book, closed notes
- Tables of inference rules and equivalences will be included on test
- Sample questions from old midterms are now posted

Induction

- Mathematical Induction

$$
\begin{aligned}
& \mathrm{P}(0) \\
& \forall \mathrm{k} \geq 0(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \\
\therefore & \forall \mathrm{n} \geq 0 \mathrm{P}(\mathrm{n})
\end{aligned}
$$

- Induction proof layout:

1. Let $P(n)$ be " ". By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that $P(k)$ is true for some arbitrary integer $k \geq 0$
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(k)$ is true
5. Conclusion: Result follows by induction

Strong Induction

- Strong Induction proof layout:

1. Let $\mathrm{P}(\mathrm{n})$ be "...". By induction we will show that $\mathrm{P}(\mathrm{n})$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$ we have $P(j)$ true for every integer j with $0 \leq j \leq k$.
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(0), \ldots, P(k)$ are true
5. Conclusion: Result follows by induction

Bounding the Fibonacci Numbers

How we did it last time

$f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$
Theorem: $2^{n / 2-1} \leq f_{n}<2^{n}$ for all $n \geq 2$
Proof:

1. Let $P(n)$ be " $2^{n / 2-1} \leq f_{n}<2^{n}$. By (strong) induction we prove $P(n)$ for all $n \geq 2$.
2. Base Case: ... $\mathrm{P}(2)$ is true, $\ldots \mathrm{P}(3)$ is true
3. Ind.Hyp: Assume $2^{j / 2-1} \leq f_{j}<2^{j}$ for all integers j with $2 \leq j \leq k$ for ... $k \geq 3$.
4. Ind. Step: Goal: Show $2^{(k+1) / 2-1} \leq f_{k+1}<2^{k+1}$

$$
f_{k+1}=f_{k}+f_{k-1} \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \text { by I.H. since } k-1 \geq 2
$$

$>2^{(\mathrm{k}-1) / 2-1}+2^{(\mathrm{k}-1) / 2-1}=2 \cdot 2^{(\mathrm{k}-1) / 2-1}=2^{(\mathrm{k}+1) / 2-1}$
$f_{k+1}=f_{k}+f_{k-1}<2^{k}+2^{(k-1)}$ by I.H. since $k-1 \geq 2$

$$
<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
$$

Bounding the Fibonacci Numbers Alternative Layout

$f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$
Theorem: $2^{n / 2-1} \leq f_{n}<2^{n}$ for all $n \geq 2$
Proof:

1. Let $P(n)$ be " $2^{n / 2-1} \leq f_{n}<2^{n}$. By (strong) induction we prove $P(n)$ for all $n \geq 2$.
2. Base Case: ... $P(2)$ is true
3. Ind.Hyp: Assume $2^{j / 2-1} \leq f_{j}<2^{j}$ for all integers j with $2 \leq j \leq k$ for $\ldots \mathrm{k} \geq 2$.
4. Ind. Step: Goal: Show $2^{(k+1) / 2-1} \leq f_{k+1}<2^{k+1}$

$$
\text { Case } k=2: \ldots P(3) \text { is true }
$$

Case $k \geq 3: f_{k+1}=f_{k}+f_{k-1} \geq 2^{k / 2-1}+2^{(k-1) / 2-1}$ by I.H. since $k-1 \geq 2$
$>2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2 \cdot 2^{(k-1) / 2-1}=2^{(k+1) / 2-1}$
$f_{k+1}=f_{k}+f_{k-1}<2^{k}+2^{(k-1)}$ by I.H. since $k-1 \geq 2$
$<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S ;$
Recursive:
if $[x, y, z] \in S, \alpha$ in \mathbb{R}, then $[\alpha x, \alpha y, \alpha z] \in S$
if $\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S$
then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$

Powers of 3

Recursive Definitions of Sets: General Form

- Recursive definition
- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S .
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in \Sigma^{*}$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis: λ is a palindrome and any a $\in \Sigma$ is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every a $\in \Sigma$

All binary strings with no 1's before 0's

Function definitions on recursively defined sets

```
len (\lambda) = 0;
len (wa) = 1 + len(w); for w \in \Sigma *, a \in \Sigma
Reversal:
\lambdaR}=
(wa)R}=a\mp@subsup{w}{}{R}\mathrm{ for w }\in\mp@subsup{\Sigma}{}{*},a\in
Concatenation:
x - \lambda = x for x }\in\mp@subsup{\Sigma}{}{*
x}\cdot\textrm{wa}=(\textrm{x}\cdot\textrm{w})\textrm{a}\mathrm{ for x,w }\in\mp@subsup{\Sigma}{}{*},\textrm{a}\in
```

Functions defined on rooted binary trees

- $\operatorname{size}(\bullet)=1$
- $\operatorname{size}\left(T_{1}\right)=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$
- height(•)=0
- height $\left(T_{1}\right)$,height $\left.\left(T_{2}\right)\right\}$

Rooted Binary trees

- Basis: - is a rooted binary tree
- Recursive Step:

binary trees then so is:

Structural Induction: proving properties of recursively defined sets How to prove $\forall x \in S . P(x)$ is true:
-Base Case: Show that P is true for all specific elements of S mentioned in the Basis step
-Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
-Inductive Step: Prove that P holds for each of the new elements constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis
-Conclude that $\forall x \in S . P(x)$

Structural Induction versus

Ordinary Induction

- Ordinary induction is a special case of structural induction:
- Recursive Definition of \mathbb{N}
- Basis: $0 \in \mathbb{N}$
- Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$
- Structural induction follows from ordinary induction
- Let $Q(n)$ be true iff for all $x \in S$ that take n Recursive steps to be constructed, $\mathrm{P}(\mathrm{x})$ is true.

Using Structural Induction

- Let S be given by
- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$, then $x+y \in S$.
- Claim: Every element of S is divisible by 3

Structural Induction for strings

- Let S be a set of strings over $\{a, b\}$ defined as follows
- Basis: $a \in S$
- Recursive:
- If $w \in S$ then $a w \in S$ and baw $\in S$
- If $u \in S$ and $v \in S$ then $u v \in S$
- Claim: if $w \in S$ then w has more a's than b's
len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all strings x and y
Let $P(w)$ be "len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ "

