CSE 311 Foundations of Computing I

Lecture 16 Recursively Defined Sets and Structural Induction Spring 2013

Announcements

- Reading assignments
 - Today:
 - 5.3 7th Edition
 - 5.3 6th Edition
- Midterm Friday, May 10, MGH 389
 - Closed book, closed notes
 - Tables of inference rules and equivalences will be included on test
 - Sample questions from old midterms are now posted

2

4

Induction

Mathematical Induction

P(0) $\forall k \ge 0 (P(k) \rightarrow P(k+1))$ ∴ $\forall n \ge 0 P(n)$

- Induction proof layout:
 - Let P(n) be " ". By induction we will show that P(n) is true for every n≥0
 - 2. Base Case: Prove P(0)
 - 3. Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer $k \ge 0$
 - 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(k) is true
 - 5. Conclusion: Result follows by induction

Strong Induction

P(0)

1

3

 $\forall k (\forall j ((0 \le j \le k) \rightarrow P(j)) \rightarrow P(k+1))$

- $\therefore \forall n P(n)$
- Strong Induction proof layout:
 - Let P(n) be "...". By induction we will show that P(n) is true for every n≥0
 - 2. Base Case: Prove P(0)
 - 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 0$ we have P(j) true for every integer j with $0 \le j \le k$.
 - 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(0),...,P(k) are true
 - 5. Conclusion: Result follows by induction

Bounding the Fibonacci Numbers How we did it last time

Bounding the Fibonacci Numbers Alternative Layout

Recursive Definitions of Sets

5

7

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

```
\begin{array}{l} \textbf{Basis:} [1,\,1,\,0] \in \,S,\,[0,\,1,\,1] \in \,S;\\ \textbf{Recursive:} \\ & \text{if } [x,\,y,\,z] \in \,S,\,\,\alpha \text{ in }\mathbb{R},\,\,\text{then } [\alpha\,x,\,\alpha\,y,\,\alpha\,z] \in \,S\\ & \text{if } [x_1,\,y_1,\,z_1],\,[x_2,\,y_2,\,z_2] \in \,S\\ & \quad \text{then } [x_1+x_2,\,y_1+y_2,\,z_1+z_2] \in \,S \end{array}
```

Recursive Definitions of Sets: General Form

- Recursive definition
 - Basis step: Some specific elements are in S
 - *Recursive step:* Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

9

11

Strings

- An *alphabet* Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by
 - **Basis:** $\lambda \in \Sigma^*$ (λ is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- **Basis:** λ is a palindrome and any $a \in \Sigma$ is a palindrome
- **Recursive step:** If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All binary strings with no 1's before 0's

10

Functions defined on rooted binary trees

• size(•)=1

• size(
$$(T_1, T_2, T_2)$$
) = 1+size(T₁)+size(T₂)

- height(•)=0
- height((T_1))=1+max{height(T_1),height(T_2)}

Structural Induction: proving properties of recursively defined sets

How to prove $\forall x \in S$. P(x) is true:

•Base Case: Show that P is true for all specific elements of S mentioned in the *Basis step*

•Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the *Recursive step*

•Inductive Step: Prove that P holds for each of the new elements constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

•Conclude that $\forall x \in S. P(x)$

15

Structural Induction versus **Using Structural Induction Ordinary Induction** • Let S be given by - **Basis:** $6 \in S$; $15 \in S$; Ordinary induction is a special case of structural induction: - **Recursive:** if $x, y \in S$, then $x + y \in S$. − Recursive Definition of N • Claim: Every element of S is divisible by 3 • Basis: $0 \in \mathbb{N}$ • **Recursive Step:** If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$ Structural induction follows from ordinary induction • Let Q(n) be true iff for all x∈S that take n Recursive steps to be constructed, P(x) is true. 17 18

Structural Induction for strings

- Let S be a set of strings over {a,b} defined as follows
 - Basis: $a \in S$
 - Recursive:
 - If $w \in S$ then $aw \in S$ and $baw \in S$
 - * If $u \in S$ and $v \in S$ then $uv \in S$
- Claim: if $w \in S$ then w has more a's than b's

$len(x \bullet y) = len(x) + len(y)$ for all strings x and y

Let P(w) be "len(x•w)=len(x)+len(w)"