Announcements

CSE 311 Foundations of Computing I

Lecture 15
Strong Induction and Recursive
Definitions
Spring 2013

- Reading assignments
- Today:
- 5.2-5.3 $7^{\text {th }}$ Edition
- 4.2-5.3 $6^{\text {th }}$ Edition
- Midterm Friday, May 10, MGH 389
- Closed book, closed notes
- Tables of inference rules and equivalences will be included on test
- Sample questions from old midterms are now posted

Highlights from last lecture

- Mathematical Induction

$$
\begin{aligned}
& \mathrm{P}(0) \\
\therefore & \forall \mathrm{k} \geq 0(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \\
\therefore & \forall \mathrm{n} \geq 0 \mathrm{P}(\mathrm{n})
\end{aligned}
$$

- Induction proof layout:

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that $P(k)$ is true for some arbitrary integer $k \geq 0$
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(k)$ is true
5. Conclusion: Result follows by induction

Strong Induction

$\mathrm{P}(0)$
$\forall \mathrm{k}((\mathrm{P}(0) \wedge \mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge P(\mathrm{k})) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$
Follows from ordinary induction applied to
$Q(n)=P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(n)$

Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis:

Assume that for some arbitrary integer $\mathrm{k} \geq 0, \mathrm{P}(\mathrm{j})$ is true for every j from 0 to k
4. Inductive Step:

Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction

Every integer ≥ 2 is the product of primes

Recursive Definitions of Functions

- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$
- $G(0)=1 ; G(n+1)=2 \times G(n)$ for all $n \geq 0$
- 0 ! $=1 ;(n+1)!=(n+1) \times n!$ for all $n \geq 0$
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$

Fibonacci Numbers

- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$

Bounding the Fibonacci Numbers

- Theorem: $2^{n / 2-1} \leq f_{n}<2^{n}$ for all $n \geq 2$

Fibonacci numbers and the running time of Euclid's algorithm

Lamé's Theorem: Suppose that Euclid's algorithm

 takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq f_{n+1}$ (which we know is $\geq 2^{n / 2}$)- Set $r_{n+1}=a, r_{n}=b$ then Euclid's alg. computes
$r_{n+1}=q_{n} r_{n}+r_{n-1}$
$r_{n}=q_{n-1} r_{n-1}+r_{n-2}$
each quotient $q_{i} \geq 1$
$r_{1} \geq 1=f_{1} \quad$ " $r_{0} "=0=f_{0}$
$r_{3}=q_{2} r_{2}+r_{1}$
$r_{2}=q_{1} r_{1}+0$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$;
Recursive:
if $[x, y, z] \in S, \alpha$ in R, then $[\alpha x, \alpha y, \alpha z] \in S$
if $\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S$
then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$

Powers of 3

Recursive Definitions of Sets: General Form

- Recursive definition
- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S .
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in \Sigma^{*}$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis: λ is a palindrome and any a $\in \Sigma$ is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All binary strings with no 1's before 0's

