CSE 311 Foundations of Computing I

Lecture 15 Strong Induction and Recursive Definitions Spring 2013

Announcements

- Reading assignments
 - Today:

1

3

- 5.2-5.3 7th Edition
- 4.2-5.3 6th Edition
- Midterm Friday, May 10, MGH 389
 - Closed book, closed notes
 - Tables of inference rules and equivalences will be included on test
 - Sample questions from old midterms are now posted

2

4

Highlights from last lecture

• Mathematical Induction

P(0) \forall k≥0 (P(k) → P(k+1)) \therefore \forall n≥0 P(n)

- Induction proof layout:
 - 1. By induction we will show that P(n) is true for every $n \ge 0$
 - 2. Base Case: Prove P(0)
 - 3. Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer $k \ge 0$
 - 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(k) is true
 - 5. Conclusion: Result follows by induction

Strong Induction

 $\begin{array}{l} \mathsf{P}(0) \\ \underline{\forall \ k \ ((\mathsf{P}(0) \land \mathsf{P}(1) \land \mathsf{P}(2) \land \dots \land \mathsf{P}(k)) \to \mathsf{P}(k+1))} \\ \therefore \ \overline{\forall \ n \ \mathsf{P}(n)} \end{array}$

Follows from ordinary induction applied to $Q(n) = P(0) \land P(1) \land P(2) \land ... \land P(n)$

Strong Induction English Proofs	Every integer ≥ 2 is the product of primes
 By induction we will show that P(n) is true for every n≥0 	
2. Base Case: Prove P(0)	
 Inductive Hypothesis: Assume that for some arbitrary integer k ≥ 0, P(j) is true for every j from 0 to k 	
4. Inductive Step: Prove that P(k+1) is true using the Inductive Hypothesis (that P(i) is true for all values $\leq k$)	
 Conclusion: Result follows by induction 	6
Recursive Definitions of Functions	Fibonacci Numbers
$F(0) = 0$; $F(n + 1) = F(n) + 1$ for all $n \ge 0$	• $f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$
G(0) = 1; G(n + 1) = 2 × G(n) for all n≥ 0	
0! = 1; (n+1)! = (n+1) × n! for all n≥ 0	
H(0) = 1; H(n + 1) = $2^{H(n)}$ for all n≥ 0	

Bounding the Fibonacci Numbers

• Theorem: $2^{n/2-1} \le f_n < 2^n$ for all $n \ge 2$

Fibonacci numbers and the running time of Euclid's algorithm

Lamé's Theorem: Suppose that Euclid's algorithm takes n steps for gcd(a,b) with a>b, then $a \ge f_{n+1}$ (which we know is $\ge 2^{n/2}$)

• Set $r_{n+1} = a$, $r_n = b$ then Euclid's alg. computes $r_{n+1} = q_n r_n + r_{n-1}$ $r_n = q_{n-1} r_{n-1} + r_{n-2}$ \vdots each quotient $q_i \ge 1$ $r_1 \ge 1 = f_1$ " r_0 "= $0 = f_0$ $r_3 = q_2 r_2 + r_1$ $r_2 = q_1 r_1 + 0$

Recursive Definitions of Sets

9

11

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

```
\begin{array}{l} \text{Basis: } [1,\,1,\,0] \in \,S,\, [0,\,1,\,1] \in \,S;\\ \text{Recursive:}\\ & \text{if } [x,\,y,\,z] \in \,S,\,\,\alpha \text{ in }R,\,\,\text{then } [\alpha\,x,\,\alpha\,y,\,\alpha\,z] \in \,S\\ & \text{if } [x_1,\,y_1,\,z_1],\, [x_2,\,y_2,\,z_2] \in \,S\\ & \quad \text{then } [x_1+x_2,\,y_1+y_2,\,z_1+z_2] \in \,S \end{array}
```

10

Recursive Definitions of Sets: General Form

- Recursive definition
 - Basis step: Some specific elements are in S
 - *Recursive step:* Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

13

15

Strings

- An *alphabet* Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by
 - Basis: $\lambda \in \Sigma^*$ (λ is the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis: λ is a palindrome and any a $\in \Sigma$ is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All binary strings with no 1's before 0's

14

16