CSE 311 Foundations of
Computing |

Lecture 15

Strong Induction and Recursive
Definitions

Spring 2013

Announcements

* Reading assignments
— Today:
¢ 5.2-5.3 7t Edition
« 4.2-53 6t Edition

* Midterm Friday, May 10, MGH 389
— Closed book, closed notes

— Tables of inference rules and equivalences will be
included on test

— Sample questions from old midterms are now posted

Highlights from last lecture

* Mathematical Induction
P(0)
v k=0 (P(k) = P(k+1))
=V n20 P(n)

* Induction proof layout:

1. By induction we will show that P(n) is true for every n=0
2. Base Case: Prove P(0)

3. Inductive Hypothesis: Assume that P(k) is true for
some arbitrary integer k > 0

4. Inductive Step: Prove that P(k+1) is true using Inductive
Hypothesis that P(k) is true

5. Conclusion: Result follows by induction

Strong Induction

P(0)
VY K ((P(0O) AP(1) AP(2) A ... AP(K)) = P(k+1))
=V nP(n)

Follows from ordinary induction applied to
Q(n) = P(0) AP(1) AP(2) A ... AP(n)




Strong Induction English Proofs

1. By induction we will show that P(n) is true for
every n=0

2. Base Case: Prove P(0)

3. Inductive Hypothesis:
Assume that for some arbitrary integer k > 0, P(j)
is true for every j from 0 to k

4. Inductive Step:
Prove that P(k+1) is true using the Inductive
Hypothesis (that P(j) is true for all values < k)

5. Conclusion: Result follows by induction

Every integer 2 2 is the product of primes

Recursive Definitions of Functions

F(0)=0; F(n+1)=F(n)+1foralln>0

G(0)=1; G(n+1)= 2xG(n)foralln=0

0!=1; (n+1)! =(n+1) X n! foralln>0

H(0) =1; H(n+1)=2""foralln>0

Fibonacci Numbers

e fo=0;f,=1;f =f ,+f ,foralln>2




Bounding the Fibonacci Numbers

* Theorem: 2"21<f <2"foralln>2

Fibonacci numbers and the running time of
Euclid’s algorithm

Lamé’s Theorem: Suppose that Euclid’s algorithm
takes n steps for gcd(a,b) with a>b, then a > f_,; (which
we know is > 2"/2)

e Setr_,,=a, r,=b then Euclid’s alg. computes

n+1™
I’-n+1= ann + rn-1

r=q ,f,+r._ .
i in-2 each quotient g;> 1

r1 Z 1=.|:1 “ro”=0=f0
r3=Q,r+r
r,=q,r,+0

Recursive Definitions of Sets

* Recursive definition
— Basis step: 0 S
— Recursive step: ifxe S,thenx+2¢€ S

— Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: 6€ S; 15€ S;
Recursive: ifx,y e S,thenx+ye S;

Basis: [1,1,0]e S,[0,1,1] € S;
Recursive:
if[x,y,z] e S, ainR, then[aax,ay,az]e S

if [Xq, ¥4, Z4], [X2, Yo, 2l € S
then [X; + Xp, Y1 + Y2, Zy + Z5] € S

Powers of 3




Recursive Definitions of Sets:
General Form

* Recursive definition
— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed from
these named elements are also in S.

— Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive steps

Strings

* An alphabet X is any finite set of characters.

* The set X* of strings over the alphabet X is
defined by
— Basis: A€ X* (Ais the empty string)
— Recursive: ifwe X*, xe ¥, thenwx e X*

Palindromes

* Palindromes are strings that are the same
backwards and forwards

* Basis: Aisa palindrome andanya€Xisa
palindrome

* Recursive step: If p is a palindrome then apa is
a palindrome for everya € X

All binary strings with no 1’s before 0’s




