## Announcements

# CSE 311 Foundations of Computing I 

Lecture 14
Induction and Strong Induction
Spring 2013

- Reading assignments
- Today:
- 5.1-5.2 $7^{\text {th }}$ Edition
- 4.1-4.2 $6^{\text {th }}$ Edition
- 3.3, 3.4 $5^{\text {th }}$ Edition
- Homework 4 due today, Homework 3 back
- Homework 5 out today, due May 8
- Midterm Friday, May 10, MGH 389
- Closed book, closed notes
- Tables of inference rules and equivalences will be included on test


## Highlights from last lecture

- Mathematical Induction

$$
\begin{aligned}
& \mathrm{P}(0) \\
& \forall \mathrm{k} \geq 0(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \\
& \therefore \forall \mathrm{n} \geq 0 \mathrm{P}(\mathrm{n})
\end{aligned}
$$

- Induction proof layout:

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that $P(k)$ is true for some arbitrary integer $k \geq 0$
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(k)$ is true
5. Conclusion: Result follows by induction

## Highlights from last lecture:

Claim: $3 \mid 2^{2 n}-1$ for all $n \geq 0$ Proof:

1. Let $P(n)$ be " $3 \mid 2^{2 n}-1$ ". We will prove by induction that $P(n)$ is true for all integers $n \geq 0$.
2. Base Case: $n=0 . \quad 2^{2 \bullet 0}-1=2^{0}-1=1-1=0=3 \bullet 0$. Therefore $3 \mid 2^{2 \cdot 0}-1$ so $P(0)$ is true
3. Inductive Hypothesis: Assume that $3 \mid 2^{2 k}-1$ for some arbitrary integer $\mathrm{k} \geq 0$.
4. Inductive Step: Goal: Show $3 \mid 2^{2(k+1)}-1$

Highlights from last lecture:

$$
1+2+4+\ldots+2^{n}=2^{n+1}-1 \text { for all } n \geq 0
$$

Proof continued...
4. Inductive Step: Goal: Show $3 \mid 2^{2(k+1)}-1$

By Inductive Hypothesis there is some integer $m$ such that $2^{2 k}-1=3 \mathrm{~m}$.

Now $2^{2(k+1)}-1=2^{2 k+2}-1=4 \bullet 2^{2 k}-1=4(3 m+1)-1$

$$
=12 \mathrm{~m}+3=3(4 \mathrm{~m}+1)
$$

Since $4 m+1$ is an integer, $3 \mid 2^{2(k+1)}-1 \checkmark$
5. Conclusion: Therefore, by induction we have proved that $3 \mid 2^{2 n}-1$ for all $n \geq 0$
$1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2$ for all $n \geq 1$

## Harmonic Numbers

$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$
Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$

## Cute Application: Checkerboard tiling with Tri-ominos

Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: $\square$


## Strong Induction



## Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove P(0)
3. Inductive Hypothesis:

Assume that for some arbitrary integer $\mathrm{k} \geq 0, \mathrm{P}(\mathrm{j})$ is true for every j from 0 to k
4. Inductive Step:

Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $\mathrm{P}(\mathrm{j})$ is true for all values $\leq \mathrm{k}$ )
5. Conclusion: Result follows by induction

Every integer $\geq 2$ is the product of primes

## Recursive Definitions of Functions

- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$
- $G(0)=1 ; G(n+1)=2 \times G(n)$ for all $n \geq 0$
- 0 ! $=1 ;(n+1)!=(n+1) \times n!$ for all $n \geq 0$
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$


## Fibonacci Numbers

- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$


## Bounding the Fibonacci Numbers

- Theorem: $2^{n / 2-1} \leq f_{n}<2^{n}$ for all $n \geq 2$

Fibonacci numbers and the running time of

## Euclid's algorithm

- Theorem: Suppose that Euclid's algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq f_{n+1}$
- Set $r_{n+1}=a, r_{n}=b$ then Euclid's alg. computes
$r_{n+1}=q_{n} r_{n}+r_{n-1}$
$r_{n}=q_{n-1} r_{n-1}+r_{n-2}$
each quotient $\mathrm{q}_{\mathrm{i}} \geq 1$
$r_{1} \geq 1$
$r_{3}=q_{2} r_{2}+r_{1}$
$r_{2}=q_{1} r_{1}$

