Announcements

CSE 311 Foundations of Computing I

Lecture 13

Mathematical Induction
Spring 2013

- Reading assignment
- 5.1-5.2 $7^{\text {th }}$ Edition
- 4.1-4.2 $6^{\text {th }}$ Edition
- Today's lecture: 5.1 ($\left.7^{\text {th }}\right), 4.1$ ($\left.6^{\text {th }}\right)$

Highlights from last lecture

- Solving Modular Equations
-Solving $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{m})$ for unknown x when $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=1$.

1. Find s such that sa+tm=1
2. Compute $\mathrm{a}^{-1}=\mathrm{s}$ mod m , the multiplicative inverse of a modulo m
3. Set $x=\left(a^{-1} \bullet b\right) \bmod m$

Solve $7 x \bmod 26=1$

Mathematical Induction

- Method for proving statements about all integers $\mathrm{n} \geq 0$
- Part of sound logical inference that applies only in the domain of integers
- Not like scientific induction which is more like a guess from examples
- Particularly useful for reasoning about programs since the statement might be "after n times through this loop, property $P(n)$ holds"

Finding a Pattern

- $2^{0}-1=1-1=0=3 \cdot 0$
- $2^{2}-1=4-1=3=3 \cdot 1$
- $2^{4}-1=16-1=15=3 \cdot 5$
- $2^{6}-1=64-1=63=3 \cdot 21$
- $2^{8}-1=256-1=255=3 \cdot 85$
- ...

How do you prove it?

- Want to prove $3 \mid 2^{2 n}-1$ for all integers $n \geq 0$
- $\mathrm{n}=0$
- $\mathrm{n}=1$
$-n=2$
-n=3
- ...

Induction as a rule of Inference

Domain: integers ≥ 0 :

$\begin{aligned} & \mathrm{P}(0) \\ & \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \\ \therefore & \forall \mathrm{nP}(\mathrm{n})\end{aligned}$

How would we use the induction rule in a formal proof?

```
P(0)
\(\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))\)
\(\therefore \forall \mathrm{nP}(\mathrm{n})\)
```

1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true
4. ...
5. Prove $P(k+1)$ is true
6. $P(k) \rightarrow P(k+1)$

Direct Proof Rule
7. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ Intro \forall from 2-6
8. $\forall \mathrm{nP}(\mathrm{n})$

How would we use the induction rule in a formal proof?

1. Prove P(0)	Base Case	
2. Let k be an arbitrary integer ≥ 0 3. Assume that $\mathrm{P}(\mathrm{k})$ is true		Inductive Hypothesis Inductive Step
4. ... 5. Prove $P(k+1)$ is true		
6. $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ 7. $\forall k(P(k) \rightarrow P(k+1))$ 8. $\forall \mathrm{n} P(\mathrm{n})$		ect Proot Rule
		o \forall from 2-6
		uction Rule 1\&7

5 Steps to Inductive Proofs in English

Proof:

1. "By induction we will show that $P(n)$ is true for every $n \geq 0$ "
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis: Assume that $P(k)$ is true for
some arbitrary integer $\mathrm{k} \geq 0$ "
4. "Inductive Step:" Want to prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)!$)
5. "Conclusion: Result follows by induction"

Induction Example

- Want to prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$
$1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2$ for all $n \geq 1$

$$
1+2+4+\ldots+2^{n}=2^{n+1}-1 \text { for all } n \geq 0
$$

$$
\begin{array}{r}
\text { Harmonic Numbers } \\
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}
\end{array}
$$

Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$

Cute Application: Checkerboard

 Tiling with TrinominosProve that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \square

