
CSE 311 Foundations of

Computing I

Lecture 10

Modular Arithmetic

Spring 2013

1

Announcements

• Reading assignments

– Modular Arithmetic:

• 4.1-4.2 7th Edition

• 3.4-3.5 6th Edition

– For Wednesday-Monday:

• 4.3-4.4 to page 277 7th Edition

• 3.6-3.7 to page 236 6th Edition

• Pick up your graded HW 2 (max 83 points)

2

Highlights from last lecture:

Set Theory

3

x ∈ A : “x is an element of A”
x ∈ A : ¬ (x ∈ A)

A = B ≡ ∀ x (x ∈ A ↔ x ∈ B)

(� ⊆ �	 ∧ �	 ⊆ �) 	→ � = �

A ∪ B = { x | (x ∈ A) ∨ (x ∈ B) }

/

Applications of Set Theory

• Implementation: Characteristic Vector

• Private Key Cryptography

• Unix File Permissions

4

Russell’s Paradox

S = { x | x ∈ x }/

5

Functions review

• A function from A to B

• an assignment of exactly one element of B

to each element of A.

• We write f: A→B.

• “Image of a” = f(a)

• Domain of f : A

• Range of f = set of all images of elements of A

6

Image, Preimage

A B

a

b

c

d

e

1

2

3

4

7

Is this a function? one-to-one? onto?

a

b

c

d

e

1

2

3

4

5

6

8

Number Theory (and applications

to computing)

• Branch of Mathematics with direct relevance

to computing

• Many significant applications

– Cryptography

– Hashing

– Security

• Important tool set

9

Modular Arithmetic

• Arithmetic over a finite domain

• In computing, almost all computations are

over a finite domain

10

What are the values computed?

public void Test1() {
byte x = 250;
byte y = 20;
byte z = (byte) (x + y);
Console.WriteLine(z);

}

public void Test2() {
sbyte x = 120;
sbyte y = 20;
sbyte z = (sbyte) (x + y);
Console.WriteLine(z);

}

11 12

Arithmetic mod 7

• a +7 b = (a + b) mod 7

• a ×
7

b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0

1

2

3

4

5

6

X 0 1 2 3 4 5 6

0

1

2

3

4

5

6
13

Divisibility

14

Integers a, b, with a ≠ 0, we say that a divides b is

there is an integer k such that b = ak. The notation

a | b denotes a divides b.

Division Theorem

15

Let a be an integer and d a positive integer.

Then there are unique integers q and r, with

0 ≤ r < d, such that a = dq + r.

q = a div d r = a mod d

Note: r ≥ 0 even if a < 0. Not quite the same as a%d

Modular Arithmetic

16

Let a and b be integers, and m be a positive integer.

We say a is congruent to b modulo m if m divides a – b.

We use the notation a ≡ b (mod m) to indicate that a is

congruent to b modulo m.

Modular arithmetic

17

Let a and b be integers, and let m be a positive

integer. Then a ≡ b (mod m) if and only if

a mod m = b mod m.

Modular arithmetic

18

Let m be a positive integer. If a ≡ b (mod m) and

c ≡ d (mod m), then

• a + c ≡ b + d (mod m) and

• ac ≡ bd (mod m)

Example

19

Let n be an integer, prove that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4)

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

If x = Σi=0 bi 2i where each bi ∈	{0,1}

then representation is bn-1...b2 b1 b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

• For n = 8:

99: 0110 0011

18: 0001 0010

20

n-1

Signed integer representation

21

n-bit signed integers

Suppose -2n-1 < x < 2n-1

First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

Two’s complement representation

22

n bit signed integers, first bit will still be the sign bit
Suppose 0 ≤ x < 2n-1, x is represented by the binary representation of x
Suppose 0 < x ≤ 2n-1, -x is represented by the binary representation of 2n-x

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99: 0110 0011
-18: 1110 1110

Key property: Two’s complement representation of any number y
is equivalent to y mod 2n so arithmetic works mod 2n

Signed vs Two’s complement

23

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Signed

Two’s complement

Two’s complement representation

• For 0 < x ≤ 2n-1, -x is represented by the binary

representation of 2n-x

• To compute this: Flip the bits of x then add 1:

– All 1’s string is 2n-1 so

• Flip the bits of x ≡ replace x by 2n-1-x

24

