Reading assignments - Logical Inference CSE 311 Foundations of • 1.6, 1.7 7th Edition • 1.5, 1.6 6th Edition Computing I – Set Theory • 2.1-2.3 6th and 7th Editions Homework Lecture 8 - Graded HW 1: If you didn't pick it up yesterday you can get it now. If you did then please return it for recording. **Proofs and Set Theory** Good News: High scores Bad News: No feedback - HW 2 due now Spring 2013 HW 3 out later today 2 1 **Review...Simple Propositional** Inference Rules for Quantifiers Inference Rules P(c) for some c $\forall x P(x)$ • Excluded middle plus two inference rules per binary \therefore P(a) for any a $\therefore \exists x P(x)$ connective, one to eliminate it and one to introduce it $p \land q$ p, q ∴ p, q $\therefore p \land q$ ∴ p ∨¬p <u>"Let a be anything*"...P(a)</u> $\exists x P(x)$ \therefore P(c) for some special c ∴∀x P(x) $p \lor q$, $\neg p$ \therefore p \lor q, q \lor p ∴q **Direct Proof Rule** p⇒q p, p \rightarrow q * in the domain of P Not like other rules! ∴ p→q ∴ q See next slide... 4

Announcements

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any subformula
- Inference rules only can be applied to whole formulas (not correct otherwise).
 - e.g. 1. $p \rightarrow q$ Given 2. $(p \lor r) \rightarrow q$ Intro \lor from 1.

General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would **build up the formula you want to prove from pieces of what is given**
- 2. Use the rules for eliminating connectives to **break** down the given formulas so that you get the pieces you need in 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Example

• Prove $\forall x (P(y) \rightarrow Q(x))) \rightarrow (P(y) \rightarrow \forall x Q(x))$ where x is not a free variable in P(y)

Even and Odd

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even" Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(a)	Assumption: a arbitrary
∃y (a = 2y)	Definition of Even
a = 2c	By E elimination: c specific depends on a
$a^2 = 4c^2 = 2(2c^2)$	Algebra
∃y (a² = 2y)	By ∃ introduction
Even(a ²)	Definition of Even
Even(a)→Even(a ²)	Direct Proof rule
$\forall x (Even(x) \rightarrow Even(x^2))$	By \forall introduction
	Even(a) $\exists y (a = 2y)$ a = 2c $a^2 = 4c^2 = 2(2c^2)$ $\exists y (a^2 = 2y)$ Even(a ²) Even(a ²) $\forall x (Even(x) \rightarrow Even(x^2))$

Reference

5

7

Does not follow! e.g p=F, q=F, r=T

Even and Odd

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Since $2k^2+2k$ is an integer, x^2 is odd.

"Proof by Contradiction": One way to prove ¬p

If we assume p and derive False (a contradiction) then we have proved $\neg p$.

- 1. p Assumption ... 3. F 4. $p \rightarrow F$ Direct Proof rule 5. $\neg p \lor F$ Equivalence from 4
- 6. $\neg p$ Equivalence from 5

Even and Odd

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "No number is both even and odd" English proof: $\neg \exists x (Even(x) \land Odd(x))$ $\equiv \forall x \neg (Even(x) \land Odd(x))$

Let x be any integer and suppose that it is both even and odd. Then x=2k for some integer k and x=2n+1 for some integer n. Therefore 2k=2n+1 and hence $k=n+\frac{1}{2}$. But two integers cannot differ by $\frac{1}{2}$ so this is a contradiction.

Rational Numbers

 A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

 $Rational(x) \equiv \exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

• Prove:

- If x and y are rational then xy is rational

 $\forall x \ \forall y \ ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

11

9

Rational Numbers

• A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

- Prove:
 - If x and y are rational then xy is rational
 - If x and y are rational then x+y is rational

Rational Numbers

• A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

- Prove:
 - If x and y are rational then xy is rational
 - If x and y are rational then x+y is rational
 - If x and y are rational then x/y is rational

Counterexamples

- To *disprove* $\forall x P(x)$ find a *counterexample*
 - some c such that $\neg P(c)$
 - works because this implies $\exists x \neg P(x)$ which is equivalent to $\neg \forall x P(x)$

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

13

Set Theory

- Formal treatment dates from late 19th century
- Direct ties between set theory and logic
- Important foundational language

Definition: A set is an unordered collection of objects

 $x \in A$: "x is an element of A" "x is a member of A" "x is in A" $x \notin A$: $\neg (x \in A)$

Definitions

17

19

• A and B are *equal* if they have the same elements

 $\mathsf{A} = \mathsf{B} \equiv \forall \ x \ (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$

 A is a *subset* of B if every element of A is also in B

 $\mathsf{A} \subseteq \mathsf{B} \equiv \forall \ x \ (x \in \mathsf{A} \rightarrow x \in \mathsf{B})$

Empty Set and Power Set

- Empty set Ø does not contain any elements
- Power set of a set A = set of all subsets of A

$$\mathcal{P}(\mathsf{A}) = \{ \mathsf{B} : \mathsf{B} \subseteq \mathsf{A} \}$$

Cartesian Product : $A \times B$	Set operations
$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$	$A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$ union $A \cap B = \{ x \mid (x \in A) \land (x \in B) \}$ intersection
	$A - B = \{ x \mid (x \in A) \land (x \notin B) \}$ set difference $A \oplus B = \{ x \mid (x \in A) \oplus (x \in B) \}$ symmetric difference
21	$\overline{A} = \{ x \mid x \notin A \}$ complement (with respect to universe U)

It's Boolean algebra again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Distributive Laws

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

