Announcements

CSE 311 Foundations of Computing I

Lecture 8

Proofs and Set Theory
Spring 2013

- Reading assignments
- Logical Inference
- 1.6, $1.7 \quad 7^{\text {th }}$ Edition
- 1.5, $1.6 \quad 6^{\text {th }}$ Edition
- Set Theory
- 2.1-2.3 $\quad 6^{\text {th }}$ and $7^{\text {th }}$ Editions
- Homework
- Graded HW 1: If you didn't pick it up yesterday you can get it now. If you did then please return it for recording.
- Good News: High scores Bad News: No feedback
- HW 2 due now
- HW 3 out later today

Review...Simple Propositional Inference Rules

- Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

Inference Rules for Quantifiers
$P(c)$ for some c
$\therefore \exists \mathrm{xP}(\mathrm{x})$
\qquad
$\forall x P(x)$
$\therefore \mathrm{P}(\mathrm{a})$ for any a
$\frac{\text { "Let a be anything*"...P }(\mathrm{a})}{\therefore \forall \mathrm{xP}(\mathrm{x})} \frac{\exists \mathrm{xP}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{c}) \text { for some special } \mathrm{c}}$

* in the domain of P

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any subformula
- Inference rules only can be applied to whole formulas (not correct otherwise).
e.g. 1. $p \rightarrow q$
Given

2. $(p \vee r) \rightarrow q$ intro \vee from 1 .

Does not follow! e.g $\mathbf{p}=\mathbf{F}, \mathbf{q}=\mathbf{F}, r=\mathbf{T}$

General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need in 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Example

- Prove $\forall x(P(y) \rightarrow Q(x))) \rightarrow(P(y) \rightarrow \forall x(x))$ where x is not a free variable in $P(y)$

```
Even(x) \equiv\existsy (x=2y)
Odd(x) \equiv\existsy (x=2y+1)
Domain: Integers
```

Prove: "The square of every even number is even" Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1.	Even (a)	Assumption: a arbitrary
2.	$\exists y(a=2 y)$	Definition of Even
3.	$a=2 c$	By \exists elimination: c specific depends on a
4.	$a^{2}=4 c^{2}=2\left(2 c^{2}\right)$	Algebra
5.	$\exists y\left(a^{2}=2 y\right)$	By \exists introduction
6.	Even $\left(a^{2}\right)$	Definition of Even
7.	Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$	Direct Proof rule
8.	$\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$	By \forall introduction

Even and Odd

Prove: "The square of every odd number is odd"
English proof of: $\forall x\left(\operatorname{Odd}(x) \rightarrow \operatorname{Odd}\left(x^{2}\right)\right)$
Let x be an odd number.
Then $\mathrm{x}=2 \mathrm{k}+1$ for some integer k (depending on x) Therefore $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
Since $2 \mathrm{k}^{2}+2 \mathrm{k}$ is an integer, x^{2} is odd.

"Proof by Contradiction": One way to prove \neg p

If we assume p and derive False (a contradiction) then we have proved \neg p.

1. p Assumption
2. F
3. $\mathrm{p} \rightarrow \mathrm{F}$ Direct Proof rule
4. $\neg p \vee F \quad$ Equivalence from 4
5. $\neg \mathrm{p} \quad$ Equivalence from 5

Even and Odd

Prove: "No number is both even and odd"
English proof: $\neg \exists \mathrm{x}(\operatorname{Even}(\mathrm{x}) \wedge$ Odd $(\mathrm{x}))$

$$
\equiv \forall x \neg(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))
$$

Let x be any integer and suppose that it is both even and odd. Then $\mathrm{x}=2 \mathrm{k}$ for some integer k and $\mathrm{x}=2 \mathrm{n}+1$ for some integer n. Therefore $2 k=2 n+1$ and hence $k=n+1 / 2$.
But two integers cannot differ by $1 / 2$ so this is a contradiction.

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists \mathrm{p} \exists \mathrm{q}((\mathrm{x}=\mathrm{p} / \mathrm{q}) \wedge$ Integer $(\mathrm{p}) \wedge \operatorname{Integer}(\mathrm{q}) \wedge \mathrm{q} \neq 0)$

- Prove:
- If x and y are rational then $x y$ is rational
$\forall x \forall y(($ Rational $(x) \wedge$ Rational $(\mathrm{y})) \rightarrow$ Rational $(\mathrm{xy}))$

[^0]
Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{lnteger}(p) \wedge \operatorname{lnteger}(q) \wedge q \neq 0)$

- Prove:
- If x and y are rational then $x y$ is rational
- If x and y are rational then $x+y$ is rational

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

```
Rational(x) \equiv\existsp \existsq ((x=p/q)^Integer(p) ^Integer(q) ^q\not=0)
```

- Prove:
- If x and y are rational then $x y$ is rational
- If x and y are rational then $x+y$ is rational
- If x and y are rational then x / y is rational

Counterexamples

- To disprove $\forall \mathrm{x} \mathrm{P}(\mathrm{x})$ find a counterexample - some c such that $\neg \mathrm{P}(\mathrm{c})$
- works because this implies $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$ which is equivalent to $\neg \forall \mathrm{xP}(\mathrm{x})$

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
- In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- Easily checkable in principle
- Simple proof strategies already do a lot
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Set Theory

- Formal treatment dates from late $19^{\text {th }}$ century
- Direct ties between set theory and logic
- Important foundational language

Definition: A set is an unordered collection of objects

```
```

x\inA : " }x\mathrm{ is an element of A"

```
```

x\inA : " }x\mathrm{ is an element of A"
" }x\mathrm{ is a member of A"
" }x\mathrm{ is a member of A"
" }x\mathrm{ is in A"
" }x\mathrm{ is in A"
x\not\inA: \neg(x\inA)

```
```

x\not\inA: \neg(x\inA)

```
```


Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Empty Set and Power Set

- Empty set \emptyset does not contain any elements
- Power set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

Cartesian Product : $\mathrm{A} \times \mathrm{B}$
$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$

Set operations

$\mathrm{A} \cup \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \vee(x \in \mathrm{~B})\}$	union
$A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$	intersection
$\mathrm{A}-\mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \notin \mathrm{~B})\}$	set difference
$\mathrm{A} \oplus \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \oplus(x \in \mathrm{~B})\}$	symmetric difference
$\begin{aligned} & \overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\} \\ & \text { (with respect to universe U) } \end{aligned}$	complement

$A \cap B=\{x \mid(x \in A) \wedge(x \in B)\} \quad$ intersection
A - $\mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \notin \mathrm{~B})\} \quad$ set difference
$\mathrm{A} \oplus \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \oplus(x \in \mathrm{~B})\} \quad \begin{aligned} & \text { symmetric } \\ & \text { difference }\end{aligned}$
$\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\}$
complement
(with respect to universe U)

De Morgan's Laws

$\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

Distributive Laws

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

[^0]: Domain: Real numbers

