
CSE 311  Foundations of 

Computing I

Lecture 7

Proofs

Spring 2013

1

Announcements

• Reading assignments

– Logical Inference

• 1.6, 1.7           7th Edition

• 1.5, 1.6           6th Edition

• Homework

– Graded HW 1 available starting in Tuesday’s office 

hours

– HW 2 due Wednesday
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Highlights from last lecture

• Predicate logic,  intricacies of ∀, ∃

• Introduction to inference…
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Highlights…Proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set
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Review…An inference rule:  Modus 

Ponens
• If p and p→q are both true then q must be true

• Write this rule as

• Given: 

– If it is Monday then you have 311 homework due today. 

– It is Monday.

• Therefore, by Modus Ponens:  

– You have 311 homework due today.
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p, p→q

∴ q

Review…Proofs

• Show that r follows from p , p→q, and q→r

1.   p            Given

2. p→q Given

3. q →r     Given

4. q            Modus Ponens from 1 and 2

5. r             Modus Ponens from 3 and 4
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Review…Proofs can use 

Equivalences too
Show that ¬p follows from p→q and ¬q

1.   p→q Given

2. ¬q                 Given

3. ¬q → ¬p Contrapositive of 1 (Equivalence!)

4. ¬p                 Modus Ponens from 2 and 3
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Review…Important: Applications of 

Inference Rules

• You can use equivalences to make 

substitutions of any subformula

• Inference rules only can be applied to whole 

formulas (not correct otherwise).

e.g.  1. p→q Given

2. (p ∨ r) →q           Intro ∨ from 1.
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Does not follow! e.g p=F, q=F, r=T



Review…Inference Rules

• Each inference rule is written as                     
which means that if both A                                 
and B are true then you can infer C and you can 
infer D.

– For rule to be correct  (A ∧ B) → C  and (A ∧ B) → D  
must be a tautologies

• Sometimes rules don’t need anything to start 
with.  These rules are called axioms:

– e.g. Excluded Middle Axiom
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A, B  

∴ C,D

∴ p ∨¬p 

Review…Simple Propositional 

Inference Rules
• Excluded middle plus two inference rules per binary 

connective, one to eliminate it and one to introduce it
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p ∧ q

∴ p, q

p, q   

∴ p ∧ q 

p           

∴ p ∨ q, q ∨ p 
p ∨ q , ¬p

∴ q

p, p→q

∴ q

p⇒q  

∴ p→q

∴ p ∨¬p 

Direct Proof Rule
Not like other rules!

See next slide…

Direct Proof of an Implication

• p⇒q denotes a proof of q given p as an 

assumption.  Don’t confuse with p→q.

• The direct proof rule

– if you have such a proof then you can conclude 

that p→q is true

• E.g.  Let’s prove p → (p ∨ q)

1.    p            Assumption                               

2.   p ∨ q      Intro for ∨ from 1                             

3.     p → (p ∨ q)     Direct proof rule
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Proof subroutine
for p ⇒ (p ∨ q)

Proofs using Direct Proof Rule

• Show that p→r follows from q and (p ∧ q)→r

1.   q                     Given

2. (p ∧ q)→r     Given

3.   p Assumption

4.   p ∧ q From 1 and 3 via Intro ∧ rule    

5.   r             Modus Ponens from 2 and 4

6.    p→r Direct Proof rule
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Example

• Prove ((p→q)∧(q→r))→(p→r)
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One General Proof Strategy

1. Look at the rules for introducing connectives to see 

how you would build up the formula you want to 

prove from pieces of what is given

2. Use the rules for eliminating connectives to break 

down the given formulas so that you get the pieces 

you need to do 1.

3. Write the proof beginning with what you figured 

out for 2 followed by 1.
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Inference Rules for Quantifiers
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P(c) for some c

∴ ∃x P(x)

∀x P(x)        

∴ P(a) for any a

“Let a be anything*”...P(a)

∴ ∀x P(x)

∃x P(x)               

∴ P(c) for some special c

* in the domain of P 

Proofs using Quantifiers

“There exists an even prime number”
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Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly

between 1 and x 



Even and Odd

Prove: “The square of every even number is even”

Formal proof of: ∀x (Even(x)→Even(x2))
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Even(x) ≡ ∃∃∃∃y  (x=2y)     

Odd(x) ≡ ∃∃∃∃y  (x=2y+1)

Domain: Integers

Even and Odd

Prove: “The square of every odd number is odd”

English proof of: ∀x (Odd(x)→Odd(x2))

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1.

Since 2k2+2k is an integer, x2 is odd.   �
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Even(x) ≡ ∃∃∃∃y  (x=2y)     

Odd(x) ≡ ∃∃∃∃y  (x=2y+1)

Domain: Integers

“Proof by Contradiction”:

One way to prove ¬p
If we assume p and derive False (a contradiction) 
then we have proved ¬p.

1.  p            Assumption

...

3.  F

4.   p→ F Direct Proof rule

5.   ¬p ∨ F       Equivalence from 4

6.   ¬p              Equivalence from 5
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Even and Odd

Prove: “No number is both even and odd”

English proof: ¬ ∃x (Even(x)∧Odd(x)) 

≡∀x ¬(Even(x)∧Odd(x))

Let x be any integer and suppose that it is both even 

and odd.   Then x=2k for some integer k and x=2n+1 for 

some integer n.   Therefore 2k=2n+1 and hence k=n+½.

But two integers cannot differ by ½ so this is a 

contradiction.  �
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Even(x) ≡ ∃∃∃∃y  (x=2y)     

Odd(x) ≡ ∃∃∃∃y  (x=2y+1)

Domain: Integers



Rational Numbers

• A real number x is rational iff  there exist 

integers p and q with q≠0  such that x=p/q.

• Prove:  

– If x and y are rational then xy is rational
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Rational(x) ≡ ∃∃∃∃p ∃∃∃∃q  ((x=p/q)∧Integer(p) ∧Integer(q) ∧q≠0)    

∀x ∀y ((Rational(x)∧Rational(y))→Rational(xy))

Domain: Real numbers

Rational Numbers

• A real number x is rational iff  there exist 

integers p and q with q≠0  such that x=p/q.

• Prove:  

– If x and y are rational then xy is rational

– If x and y are rational then x+y is rational
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Rational(x) ≡ ∃∃∃∃p ∃∃∃∃q  ((x=p/q)∧Integer(p) ∧Integer(q) ∧q≠0)    

Rational Numbers

• A real number x is rational iff  there exist 

integers p and q with q≠0  such that x=p/q.

• Prove:  

– If x and y are rational then xy is rational

– If x and y are rational then x+y is rational

– If x and y are rational then x/y is rational
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Rational(x) ≡ ∃∃∃∃p ∃∃∃∃q  ((x=p/q)∧Integer(p) ∧Integer(q) ∧q≠0)    

Counterexamples

• To disprove ∀x P(x) find a counterexample

– some c such that ¬P(c)

– works because this implies ∃x ¬P(x) which is 

equivalent to ¬∀x P(x)
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Proofs

• Formal proofs follow simple well-defined rules 

and should be easy to check

– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 

designed to be easier for humans to read

– Easily checkable in principle

• Simple proof strategies already do a lot

– Later we will cover a specific strategy that applies to 

loops and recursion (mathematical induction)
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