CSE 311 Foundations of Computing I

Lecture 6 Predicate Logic, Logical Inference Spring 2013

1

3

Announcements

Reading assignments

Logical Inference
1.6, 1.7 7th Edition
1.5, 1.6, 1.7 6th Edition

Highlights from last lecture

- Predicates
 - Cat(x), Prime(x), HasTaken(s,c)
- Quantifiers
 - $\forall x (Even(x) \lor Odd(x)), \exists x (Cat(x) \land LikesTofu(x))$
- Correspondence between English and logic
 - "Red cats like tofu"
 - $\forall x ((Cat(x) \land Red(x)) \rightarrow LikesTofu(x))$
- Nested quantifiers
 - $\forall x \exists y \text{ Greater } (y, x)$

Highlights from Last Lecture Scope of Quantifiers

2

- Notlargest(x) ≡ ∃ y Greater (y, x)
 ≡ ∃ z Greater (z, x)
 - Value doesn't depend on y or z "bound variables"
 - Value does depend on x "free variable"
- Quantifiers only act on free variables of the formula they quantify
 - $\; \forall \; x \; (\exists \; y \; (P(x,y) \rightarrow \forall \; x \; Q(y,x)))$

Nested Quantifiers

- Bound variable name doesn't matter
 ∀ x ∃ y P(x, y) ≡ ∀ a ∃ b P(a, b)
- Positions of quantifiers can sometimes change $- \forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- BUT: Order is important...

Quantification with two variables

Expression	When true	When false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x∃y P(x, y)		
∃ y ∀ x P(x, y)		
		6

Negations of Quantifiers

5

7

- Not every positive integer is prime
- Some positive integer is not prime
- Prime numbers do not exist
- Every positive integer is not prime

De Morgan's Laws for Quantifiers

$$\neg \forall x \ \mathsf{P}(x) \equiv \exists x \neg \mathsf{P}(x) \neg \exists x \ \mathsf{P}(x) \equiv \forall x \neg \mathsf{P}(x)$$

De Morgan's Laws for Quantifiers

$\neg \forall x \ P(x) \equiv \exists x \neg P(x) \neg \exists x \ P(x) \equiv \forall x \neg P(x)$
$\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (y > x)$$

"For every integer there is a larger integer"

Logical Inference

- So far we've considered
 - How to understand and *express* things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

- Software Engineering
 - Express desired properties of program as set of logical constraints
 - Use inference rules to show that program implies that those constraints are satisfied
- Al
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

9

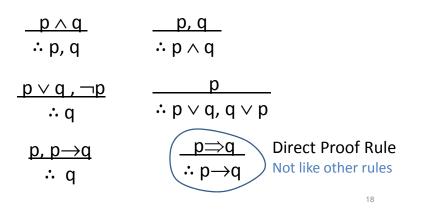
An inference rule: *Modus Ponens* **Proofs** • If p and $p \rightarrow q$ are both true then q must be true • Show that r follows from p , $p \rightarrow q$, and $q \rightarrow r$ <u>p, p→q</u> • Write this rule as 1. p Given ∴ q 2. $p \rightarrow q$ Given • Given: 3. $q \rightarrow r$ Given - If it is Friday then you have a 311 class today. 4. q Modus Ponens from 1 and 2 - It is Friday. Modus Ponens from 3 and 4 5. r • Therefore, by Modus Ponens: - You have a 311 class today 13 14 Proofs can use Equivalences too Inference Rules Α, Β • Each *inference rule* is written as Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$ ∴ C,D which means that if both A and B are true then you can infer C and you can 1. $p \rightarrow q$ Given infer D. 2. ¬q Given – For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ 3. $\neg q \rightarrow \neg p$ Contrapositive of 1 must be a tautologies 4. ¬p Modus Ponens from 2 and 3 Sometimes rules don't need anything to start with. These rules are called *axioms*: – e.g. Excluded Middle Axiom ∴ p∨¬p 15 16

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any subformula
- Inference rules only can be applied to whole formulas (not correct otherwise).
 - e.g. 1. $p \rightarrow q$ Given 2. $(p \lor r) \rightarrow q$ Intro \lor from 1.

Simple Propositional Inference Rules

• Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it



Direct Proof of an Implication

- p⇒q denotes a proof of q given p as an assumption
- The direct proof rule
 - if you have such a proof then you can conclude that $p \rightarrow q$ is true <u>Proof subroutine</u>
- E.g. 1. p Assumption 2. $p \lor q$ Intro for \lor from 1
 - 3. $p \rightarrow (p \lor q)$ Direct proof rule

Inference Rules for Quantifiers

P(c) for some c	$\forall x P(x)$
∴∃ x P(x)	∴ P(a) for any a

"Let a be anything"...P(a) $\exists x P(x)$ $\therefore \forall x P(x)$ $\therefore P(c)$ for some special c

Does not follow! e.g p=F, q=F, r=T

Proofs using Quantifiers

 Show that "Simba is a cat" follows from "All lions are cats" and "Simba is a lion" (using the domain of all animals)

Proofs using Quantifiers

22

• "There exists an even prime number"

General Proof Strategy

- A. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- B. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do A.
- C. Write the proof beginning with what you figured out for B followed by A.

23