CSE 311 Foundations of Computing I

Lecture 5 Predicate Logic Spring 2013

Announcements

- Reading assignments
 - Predicates and Quantifiers
 - 1.4, 1.5 7th Edition
 - 1.3, 1.4 6th Edition
- Hand in Homework 1 now
 Homework 2 is available on the website

Highlights from Last Lecture Sum-of-products canonical form

1

3

- Also known as Disjunctive Normal Form (DNF)
- Also known as minterm expansion

Highlights from Last Lecture Product-of-sums canonical form

2

4

- Also known as Conjunctive Normal Form (CNF)
- Also known as maxterm expansion

Highlights from Last Lecture S-o-P, P-o-S, and de Morgan's theorem

- Complement of function in sum-of-products form
 F' = A'B'C' + A'BC' + AB'C'
- Complement again and apply de Morgan's and get the product-of-sums form
 - (F')' = (A'B'C' + A'BC' + AB'C')'
 - F = (A + B + C) (A + B' + C) (A' + B + C)
- Complement of function in product-of-sums form
 F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Complement again and apply de Morgan's and get the sum-of-product form
 - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - F = A'B'C + A'BC + AB'C + ABC' + ABC

Predicate Logic

- Predicate or Propositional Function

 A function that returns a truth value
- "x is a cat"
- "x is prime"
- "student x has taken course y"
- "x > y"

5

7

• "*x* + *y* = *z*" or Sum(x, y, z)

NOTE: We will only use predicates with variables or constants as arguments.

Quantifiers

- $\forall x P(x) : P(x)$ is true for every x in the domain
- ∃ *x P*(*x*) : There is an *x* in the domain for which *P*(*x*) is true

Statements with quantifiers

- $\exists x \operatorname{Even}(x)$
- $\forall x \operatorname{Odd}(x)$
- $\forall x (Even(x) \lor Odd(x))$
- $\exists x (Even(x) \land Odd(x))$
- $\forall x \text{ Greater}(x+1, x)$
- $\exists x (Even(x) \land Prime(x))$

Domain: Positive Integers

6

Even(x) Odd(x) Prime(x) Greater(x,y) Equal(x,y)

Statements with quantifiers

Domain:

Even(x)

Odd(x)

Prime(x) Greater(x, y) Equal(x, y) Sum(x, y, z)

Positive Integers

9

11

- $\forall x \exists y$ Greater (y, x)
- $\forall x \exists y \text{ Greater } (x, y)$
- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x))$
- $\exists x \exists y(Sum(x, 2, y) \land Prime(x) \land Prime(y))$

Statements with quantifiers

• "There is an odd prime"

Domain: Positive Integers

Even(x) Odd(x) Prime(x) Greater(x,y) Sum(x,y,z)

10

- "If x is greater than two, x is not an even prime"
- $\forall x \forall y \forall z ((Sum(x, y, z) \land Odd(x) \land Odd(y)) \rightarrow Even(z))$
- "There exists an odd integer that is the sum of two primes"

English to Predicate Calculus

• "Red cats like tofu"

Cat(*x*) Red(*x*) LikesTofu(*x*)

Goldbach's Conjecture

• Every even integer greater than two can be expressed as the sum of two primes

Scope of Quantifiers	Scope of Quantifiers	
 Notlargest(x) ≡ ∃ y Greater (y, x) ≡ ∃ z Greater (z, x) Value doesn't depend on y or z "bound variables" Value does depend on x "free variable" 	• $\exists x \ (P(x) \land Q(x))$ vs $\exists x P(x) \land \exists x Q(x)$	
 Quantifiers only act on free variables of the formula they quantify ∀ x (∃ y (P(x,y) → ∀ x Q(y, x))) 		
13	14	

15

Nested Quantifiers

- Bound variable name doesn't matter
 - ∀ x ∃ y P(x, y) ≡ ∀ a ∃ b P(a, b)
- Positions of quantifiers can change
 ∀ x (Q(x) ∧ ∃ y P(x, y)) ≡ ∀ x ∃ y (Q(x) ∧ P(x, y))
- BUT: Order is important...

Quantification with two variables

Expression	When true	When false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x∃ y P(x, y)		
∃ y ∀ x P(x, y)		
		16

Negations of Quantifiers

- Not every positive integer is prime
- Some positive integer is not prime
- Prime numbers do not exist
- Every positive integer is not prime

De Morgan's Laws for Quantifiers

18

$$\neg \forall x \ \mathsf{P}(x) \equiv \exists x \neg \mathsf{P}(x) \neg \exists x \ \mathsf{P}(x) \equiv \forall x \neg \mathsf{P}(x)$$

De Morgan's Laws for Quantifiers

 $\neg \forall x \ P(x) \equiv \exists x \neg P(x)$ $\neg \exists x \ P(x) \equiv \forall x \neg P(x)$

"There is no largest integer"

 $\neg \exists x \forall y (x \ge y)$ $\equiv \forall x \neg \forall y (x \ge y)$ $\equiv \forall x \exists y \neg (x \ge y)$ $\equiv \forall x \exists y (y > x)$

"For every integer there is a larger integer"

19

17