CSE 311 Foundations of Computing I

Spring 2013, Lecture 3
Propositional Logic, Boolean
Logic/Boolean Algebra

Announcements

- Reading assignments
- Propositional Logic
- 1.1 -1.3 $7^{\text {th }}$ Edition
- 1.1-1.2 $6^{\text {th }}$ Edition
- Boolean Algebra
- 12.1 - $12.37^{\text {th }}$ Edition
-11.1-11.3 $6^{\text {th }}$ Edition

Administrative

- Course web:
http://www.cs.washington.edu/311
- Homework, Lecture slides, Office Hours ...
- Homework:
- Due Wednesday at the start of class

So far

- Propositional/Boolean logic
- Basic logical connectives
- If pigs can whistle, then horses can fly
- Basic circuits
- Tautologies, equivalences (in progress)

Combinational Logic Circuits

Design a 3 input circuit to compute the majority of 3 . Output 1 if at least two inputs are 1, output 0 otherwise

What about a majority of 5 circuit?

Other gates (more later)

- NAND

- NOR

- $\begin{aligned} X O R \\ X \oplus Y\end{aligned}$
X
Y
 Z

- XNOR $X \leftrightarrow Y, \quad X=Y$ X
Y
 : Z

Review

Logical equivalence

- Terminology: A compound proposition is a
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

$$
\begin{aligned}
& p \vee \neg p \\
& p \oplus p \\
& (p \rightarrow q) \wedge p \\
& (p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)
\end{aligned}
$$

Review

Logical Equivalence

- p and q are logically equivalent iff
$p \leftrightarrow q$ is a tautology
- i.e. p and q have the same truth table
- The notation $p \equiv q$ denotes p and q are logically equivalent
- Example: $p \equiv \neg \neg p$

De Morgan’ s Laws

- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- What are the negations of:
- The Yankees and the Phillies will play in the World Series
- It will rain today or it will snow on New Year's Day

De Morgan’ s Laws

Example: $\neg(p \wedge q) \equiv(\neg p \vee \neg q)$

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q})$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q}) \leftrightarrow(\neg \boldsymbol{p} \vee \neg \boldsymbol{q})$
T	T						
T	F						
F	T						
F	F						

Law of Implication

Example: $(p \rightarrow q) \equiv(\neg p \vee q)$

p	q	$p \rightarrow q$	$\neg p$	$\neg p \vee q$	$(p \rightarrow q) \leftrightarrow(\neg p \vee q)$

Understanding connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
- Simplification
- Testing for equivalence
- Applications
- Query optimization
- Search optimization and caching
- Artificial Intelligence
- Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- Associative
- Distributive
- Absorption
- Negation
- DeMorgan’s Laws
- Double Negation

Logical Proofs

- To show P is equivalent to Q
- Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
- Apply a series of logical equivalences to subexpressions to convert P to \mathbf{T}

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \vee q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \vee q \equiv \neg p \rightarrow q$
- $p \wedge q \equiv \neg(p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- $\mathrm{p} \leftrightarrow \mathrm{q} \equiv \neg \mathrm{p} \leftrightarrow \neg \mathrm{q}$
- $p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$
- $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Show $(p \wedge q) \rightarrow(p \vee q)$ is a tautology

> Show $(p \rightarrow q) \rightarrow r$ and $r \rightarrow(q \rightarrow p)$ are not equivalent

Boolean Logic

Applications of Propositional Logic

 for Circuits
Boolean logic

- Combinational logic
- output $=F\left(\right.$ input $_{1}$)
- Sequential logic
- output $=F\left(\right.$ output $_{t_{-1}}$, input $\left.{ }_{t}\right)$
- output dependent on history
- concept of a time step (clock)
- An algebraic structure consists of
- a set of elements $B=\{0,1\}$
- binary operations $\{+, \cdot\}$ (OR, AND)
- and a unary operation \{'\} (NOT)

A quick combinational logic example

- Calendar subsystem: number of days in a month (to control watch display)
- used in controlling the display of a wrist-watch LCD screen
- inputs: month, leap year flag
- outputs: number of days

Implementation in software

```
integer number_of_days ( month, leap_year_flag) {
```

integer number_of_days (month, leap_year_flag) {
switch (month) {
switch (month) {
case 1: return (31);
case 1: return (31);
case 2: if (leap_year_flag == 1) then
case 2: if (leap_year_flag == 1) then
return (29) else return (28);
return (29) else return (28);
case 3: return (31);
case 3: return (31);
case 12: return (31);
case 12: return (31);
default: return (0);
default: return (0);
}
}
}

```
}
```


Implementation as a combinational digital system

- Encoding:
- how many bits for each input/output?
- binary number for month
- four wires for 28, 29, 30, and 31

month	leap	d28			
d29	d30	d31			
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
1110	-	-	-	-	-
1111	-	-	-	-	-

Combinational example (cont.)

- Truth-table to logic to switches to gates
$-\mathrm{d} 28=$ " 1 when month=0010 and leap=0"
- d28 = m8'•m4'•m2•m1'•leap'
- d31 = "1 when month=0001 or month=0011 or ... month=1100"
$-\mathrm{d} 31=\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \cdot \cdot \mathrm{~m} 2^{\prime} \cdot \mathrm{m} 1\right)+\left(\mathrm{m} 8^{\prime} \cdot m 4{ }^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1\right)+.$. (m8•m4•m2'•m1')
- d31 = can we simplify more?

Combinational example (cont.)

```
d28 = m8''m4'•m2•m1'•leap'
d29 = m8'•m4'•m2•m1'•leap
d30 = (m8'•m4 m2'•m1') + (m8'`m4 m2 m1') +
    (m8•m4'\bulletm2'•m1) + (m8`m4'•m2•m1)
    =(m8'\bulletm4•m1') +(m8`m4'•m1)
d31 = (m8''m4'•m2'•m1) + (m8' }\cdot\textrm{m}4'\cdotm2\cdotm1) 
    (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
    (m8\cdotm4'\bulletm2'•m1') +(m8•m4'\bulletm2•m1') +
    (m8•m4•m2'•m1')
```


Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to " 1 "):

open switch (if A is " 0 " or unasserted) and turn off light bulb (Z)

$$
Z \equiv A
$$

Transistor networks

- Modern digital systems are designed in CMOS technology
- MOS stands for Metal-Oxide on Semiconductor
-C is for complementary because there are both normally-open and
normally-closed switches
- MOS transistors act as voltage-controlled switches
- similar, though easier to work with than relays.

Multi-input logic gates

- CMOS logic gates are inverting
- Easy to implement NAND, NOR, NOT while AND, OR, and Buffer are harder

Claude Shannon - 1938

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
- in general, there are $2^{* *}\left(2^{* *} n\right)$ functions of n inputs

Boolean algebra

- An algebraic structure consisting of
- a set of elements B
- binary operations $\{+, \bullet\}$

George Boole - 1854

- and a unary operation \{ ' \}
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure:
3. commutativity:
4. associativity:
5. identity:
6. distributivity:
7. complementarity:

$a \cdot b$ is in B

$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and ${ }^{\bullet}$
X, Y are Boolean algebra variables

Boolean expression that is true when the variables X and Y have the same va and false, otherwise

Axioms and theorems of Boolean algebra

identity

1. $X+0=X$
1D. $X \cdot 1=X$
null
2. $x+1=1$

2D. $X \cdot 0=0$
idempotency:
3. $X+X=X$
3D. $X \cdot X=X$
involution:
4. $\left(X^{\prime}\right)^{\prime}=X$
complementarity:
5. $X+X^{\prime}=1$

5D. $X \cdot X^{\prime}=0$
commutatively:
6. $X+Y=Y+X$

6D. $X \cdot Y=Y \cdot X$
associativity:
7. $(X+Y)+Z=X+(Y+Z)$
distributivity:
8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$

Axioms and theorems of Boolean algebra (cont.)

uniting:
9. $X \cdot Y+X \cdot Y^{\prime}=X$
absorption:
10. $X+X \cdot Y=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$
factoring:
12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$
$X \cdot Z+X \cdot Y$
consensus:
13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=\quad$ 13D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Y+X^{\prime} \cdot Z$
de Morgan's:
14. $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot .$.

9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$

10D. $X \cdot(X+Y)=X$
11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$
12D. $X \cdot Y+X \cdot Z=$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$ $(X+Y) \cdot\left(X^{\prime}+Z\right)$

14D. $(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

Proving theorems (rewriting)

- Using the laws of Boolean algebra:

- e.g., prove the theorem: distributivity (8) complementarity (5) identity (1D)		$\begin{aligned} & \cdot Y^{\prime}= \\ & \cdot Y^{\prime}= \\ &= \\ &= \end{aligned}$
e.g., prove the theorem:	$X+X \cdot Y$	$=\mathrm{X}$
identity (1D) distributivity (8) identity (2) identity (1D)	$X+X \cdot Y$	$\begin{aligned} & =x \\ & =x \\ & =x \\ & =x \end{aligned}$

Proving theorems (truth table)

- Using complete truth table:
- e.g., de Morgan's:
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$ NOR is equivalent to AND with inputs complemented

