CSF 311 Foundations of Computing I

Spring 2013 Lecture 2 More Propositional Logic **Application:** Circuits **Propositional Equivalence**

Administrative

- Course web: http://www.cs.washington.edu/311 - Check it often: homework, lecture slides
- Office Hours: 9 hours; check the web
- Homework:
 - Paper turn-in (stapled) handed in at the start of class on due date (Wednesday); no online turn in.
 - Individual. OK to discuss with a couple of others but nothing recorded from discussion and write-up done much later
 - Homework 1 available (on web), due April 10

Administrative

- Coursework and grading
 - Weekly written homework ~ 50 %
 - Midterm (May 10) ~ 15%
 - Final (June 10) ~ 35%
- A note about Extra Credit problems
 - Not required to get a 4.0
 - Recorded separately and grades calculated entirely without it
 - Fact that others do them can't lower your score
 - In total may raise grade by 0.1 (occasionally 0.2)
 - Each problem ends up worth less than required ones

Recall...Connectives

NOT

р

Т

Т F Т

F F

q

Т

F

OR

р	q	$p \wedge q$		
Т	Т	Т		
Т	F	F		
F	Т	F		
F F F				
AND				

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

 $p \lor q$

Т т

Т

F

XOR

2

<section-header><equation-block><equation-block><equation-block><section-header><section-header><section-header><list-item><list-item><list-item><equation-block><equation-block><equation-block><section-header><list-item><list-item><list-item><list-item><list-item><equation-block></equation-block></list-item></list-item></list-item></list-item></list-item></section-header></equation-block></equation-block></equation-block></list-item></list-item></list-item></section-header></section-header></section-header></equation-block></equation-block></equation-block></section-header>	<section-header><section-header><text><text></text></text></section-header></section-header>
Converse, Contrapositive, Inverse	Biconditional $p \leftrightarrow q$
• Implication: $p \rightarrow q$	• <i>p</i> iff <i>q</i>
• Converse: $q \rightarrow p$	 <i>p</i> is equivalent to <i>q</i>
• Contrapositive: $\neg q \rightarrow \neg p$	 <i>p</i> implies <i>q</i> and <i>q</i> implies <i>p</i>
• Inverse: $\neg p \rightarrow \neg q$	$p q p \leftrightarrow q$
Are these the same?	F F T F T F T F F T T T
Example	

7

p: "x is divisible by 4" q: "x is divisible by 2"

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - -q: you can ride the roller coaster
 - r: you are under 4 feet tall
 - s: you are older than 16
- $(r \land \neg s) \rightarrow \neg q$

Digital Circuits

- Computing with logic
 - T corresponds to 1 or "high" voltage
 - F corresponds to 0 or "low" voltage
- Gates
 - Take inputs and produce outputs = Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 - Only symmetric ones (order of inputs irrelevant)

10

9

"block looks like D of AND"

Logical Equivalence p and q are logically equivalent iff

- $p \leftrightarrow q$ is a tautology – *i.e.* p and q have the same truth table
- The notation p = q denotes p and q are logically equivalent
- Example: $p \equiv \neg \neg p$

р	¬ <i>p</i>	¬ ¬ <i>p</i>	$p \leftrightarrow \neg \neg p$

De Morgan's Laws

 $\neg (p \land q) \equiv \neg p \land \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$

What are the negations of:

- The Yankees and the Phillies will play in the World Series
- It will rain today or it will snow on New Year's Day

De Morgan's Laws

Example: $\neg (p \land q) \equiv (\neg p \lor \neg q)$

р	q	¬ <i>p</i>	¬ q	¬ <i>p</i> ∨ ¬ <i>q</i>	p ^ q	$\neg (p \land q)$	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т						
Т	F						
F	Т						
F	F						

Law of Implication

Example: $(p \rightarrow q) \equiv (\neg p \lor q)$

p	q	$p \rightarrow q$	¬ <i>p</i>	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

19

17

18

Computing equivalence

- Describe an algorithm for computing if two logical expressions/circuits are equivalent
- What is the run time of the algorithm?

Understanding connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- Associative
- Distributive
- Absorption
- Negation

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \lor q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$

•
$$p \lor q \equiv \neg p \rightarrow q$$

- $p \land q \equiv \neg (p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q

21

23

22

Logical Proofs To show P is equivalent to Q 	Show $(p \land q) \rightarrow (p \lor q)$ is a tautology
 Apply a series of logical equivalences to subexpressions to convert P to Q 	
 To show P is a tautology 	
 Apply a series of logical equivalences to subexpressions to convert P to T 	
25	26
Show $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not equivalent	