CSE 311 Foundations of Computing I

Spring 2013
 Lecture 2

More Propositional Logic
Application: Circuits
Propositional Equivalence

Administrative

- Course web: http://www.cs.washington.edu/311
- Check it often: homework, lecture slides
- Office Hours: 9 hours; check the web
- Homework:
- Paper turn-in (stapled) handed in at the start of class on due date (Wednesday); no online turn in.
- Individual. OK to discuss with a couple of others but nothing recorded from discussion and write-up done much later
- Homework 1 available (on web), due April 10

Administrative

- Coursework and grading
- Weekly written homework ~ 50%
- Midterm (May 10) ~ 15\%
- Final (June 10) ~35\%
- A note about Extra Credit problems
- Not required to get a 4.0
- Recorded separately and grades calculated entirely without it
- Fact that others do them can't lower your score
- In total may raise grade by 0.1 (occasionally 0.2)
- Each problem ends up worth less than required ones

Recall...Connectives

p	$\neg p$
T	F
F	T

NOT

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

OR

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

AND

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

XOR

$$
p \rightarrow q
$$

- Implication

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- p implies q
- whenever p is true q must be true
- if p then q
- q if p
$-p$ is sufficient for q
- p only if q

"If you behave then I' ll buy you ice cream"

What if you don' t behave?

Converse, Contrapositive, Inverse

- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$
F	F	T
F	T	F
T	F	F
T	T	T

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
$-q$: you can ride the roller coaster
- r : you are under 4 feet tall
- s : you are older than 16

Digital Circuits

- Computing with logic
- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage
- Gates
- Take inputs and produce outputs = Functions
- Several kinds of gates
- Correspond to propositional connectives
- Only symmetric ones (order of inputs irrelevant)

Gates

$(r \wedge \neg s) \rightarrow \neg q$

AND connective $p \wedge q$

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

AND gate

p	q	out
1	1	1
1	0	0
0	1	0
0	0	0

"block looks like D of AND"

Gates

"arrowhead block looks like V"

Gates

NOT connective $\neg p$

> NOT gate (inverter)

\boldsymbol{p}	$\neg \boldsymbol{p}$
\mathbf{T}	F
F	\mathbf{T}

p	out
1	0
0	1

Bubble most important for this diagram

Combinational Logic Circuits

Values get sent along wires connecting gates

Combinational Logic Circuits

Wires can send one value to multiple gates

Logical equivalence

- Terminology: A compound proposition is a
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
$p \oplus p$
$(p \rightarrow q) \wedge p$
$(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

Logical Equivalence

- p and q are logically equivalent iff
$p \leftrightarrow q$ is a tautology
- i.e. p and q have the same truth table
- The notation $p \equiv q$ denotes p and q are logically equivalent
- Example: $p \equiv \neg \neg p$

De Morgan’ s Laws

Example: $\neg(p \wedge q) \equiv(\neg p \vee \neg q)$

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q})$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q}) \leftrightarrow(\neg \boldsymbol{p} \vee \neg \boldsymbol{q})$
T	T						
T	F						
F	T						
F	F						

De Morgan’ s Laws

$\neg(p \wedge q) \equiv \neg p \vee \neg q$
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
What are the negations of:

- The Yankees and the Phillies will play in the World Series
- It will rain today or it will snow on New Year's Day

Law of Implication

Example: $(p \rightarrow q) \equiv(\neg p \vee q)$

Computing equivalence

- Describe an algorithm for computing if two logical expressions/circuits are equivalent
- What is the run time of the algorithm?

Understanding connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
- Simplification
- Testing for equivalence
- Applications
- Query optimization
- Search optimization and caching
- Artificial Intelligence
- Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- Associative
- Distributive
- Absorption
- Negation

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \vee q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \vee q \equiv \neg p \rightarrow q$
- $p \wedge q \equiv \neg(p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$
- $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Logical Proofs

Show $(p \wedge q) \rightarrow(p \vee q)$ is a tautology

- To show P is equivalent to Q
- Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
- Apply a series of logical equivalences to subexpressions to convert P to \mathbf{T}

Show $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ are not equivalent

