CSE 311 Foundations of Computing I

Spring 2013
Lecture 1
Propositional Logic

Why this material is important

- Language and formalism for expressing ideas in computing
- · Fundamental tasks in computing
 - Translating imprecise specification into a working system
 - Getting the details right

About the course

- From the CSE catalog:
 - CSE 311 Foundations of Computing I (4)
 Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.
- What I think the course is about:
 - Foundational structures for the practice of computer science and engineering

Topic List

- Logic/boolean algebra: hardware design, testing, artificial intelligence, software engineering
- Mathematical reasoning/induction: algorithm design, programming languages
- Number theory: cryptography, security, algorithm design
- Relations/relational algebra: databases
- Finite state machines: Hardware and software design, automatic verification
- Turing machines: Halting problem

Administration

- Instructor
 - Paul Beame
- · Teaching Assistants
 - Caitlin Bonnar,
 - Chelsea Dallas
 - Chantal Murthy
 - Noah Siegel
- · Quiz sections
 - Thursdays
- Text: Rosen, Discrete Mathematics
 - 6th Edition or 7th Edition

- Homework
 - Due Wednesdays at start of class
 - Individual
- Exams
 - Midterm, Friday, May 10
 - Final Exam, Monday, June 10, 2:30-4:20 pm
 - All course information posted on the web: http://www.cs.washington.edu/311
- Grading Weight (Roughly)
 - 50% homework
 - 35% final exam
 - 15% midterm

Propositional Logic

Propositions

- · A statement that has a truth value
- Which of the following are propositions?
 - The Washington State flag is red
 - It snowed in Whistler, BC on January 4, 2011.
 - There is an Argentinian Pope named Francis I
 - Space aliens landed in Roswell, New Mexico
 - Turn your homework in on Wednesday
 - Why are we taking this class?
 - If n is an integer greater than two, then the equation $a^n + b^n = c^n$ has no solutions in non-zero integers a, b, and c.
 - Every even integer greater than two can be written as the sum of two primes
 - This statement is false
- Propositional variables: p, q, r, s, . . .
- Truth values: **T** for true, **F** for false

Compound Propositions

Negation (not) ¬ p

• Conjunction (and) $p \wedge q$

• Disjunction (or) $p \vee q$

• Exclusive or $p \oplus q$

• Implication $p \rightarrow q$

• Biconditional $p \leftrightarrow q$

Understanding complex propositions

 Either Harry finds the locket and Ron breaks his wand or Fred will not open a joke shop

Atomic propositions
h: Harry finds the locket
r: Ron breaks his wand
f: Fred opens a joke shop

Understanding complex propositions with a truth table

h	r	f	$h \wedge r$	$\neg f$	$(h \wedge r) \oplus \neg f$

Aside: Number of binary operators

 How many different binary operators are there on atomic propositions? $p \rightarrow q$

р	q	$p \rightarrow q$

- Implication
 - -p implies q
 - whenever p is true q must be true
 - if p then q
 - -q if p
 - -p is sufficient for q
 - -p only if q

If pigs can whistle then horses can fly

Converse, Contrapositive, Inverse

- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

Example
p: "x is divisible by 2"
q: "x is divisible by 4"

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

р	q	$p \leftrightarrow q$

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - -q: you can ride the roller coaster
 - -r: you are under 4 feet tall
 - -s: you are older than 16

 $(r \land \neg s) \rightarrow \neg q$