University of Washington Department of Computer Science and Engineering CSE 311, Spring 2013

Homework 6, Due Wednesday, May 22, 2013

Problem 1:

The following recursive definition describes the running time needed by a recursive algorithm. Let $c \ge 0$ be an integer. Suppose that a function T mapping integers $n \ge 0$ to integers satisfies

- $T(0) = 0, T(n) \le c \text{ for } n \le 20,$
- $T(n+1) \le T(\lfloor n/5 \rfloor) + T(\lfloor 3n/4 \rfloor) + cn$ for $n \ge 20$.

Prove by (strong) induction that $T(n) \leq 20cn$ for all $n \geq 0$. (Hint: All you need about $\lfloor \rfloor$ is that for $x \geq 0$, $\lfloor x \rfloor$ is an integer and $0 \leq \lfloor x \rfloor \leq x$.)

Problem 2:

Consider the following one-player game: The player starts with an integer $n \ge 1$.

If n = 1 the game stops and the player has not earned any points.

If n > 1 the player gets to split n into two positive integers r and n - r. For this move, the player earns $r \cdot (n - r)$ points. After this, the player plays the game both on r and on n - r, adding the points earned from those games to the points already earned.

Use induction to prove that no matter how the player plays on input $n \ge 1$, the player earns exactly n(n-1)/2 points.

Problem 3:

The set of *almost balanced* binary trees is a subset of all rooted binary trees and is defined in the same way as rooted binary trees except that the recursive step has an extra restriction:

In an almost balanced binary tree, one can only join trees T_1 and T_2 as in the rooted binary tree definition if either $\mathbf{height}(T_1) = \mathbf{height}(T_2)$ or $\mathbf{height}(T_1)$ and $\mathbf{height}(T_2)$ differ by 1. The functions size and height are defined exactly as for rooted binary trees.

Prove by induction that every almost balanced binary tree T satisfies $\operatorname{size}(T) \ge f_{\operatorname{height}(T)+1}$ where f_m denotes the *m*-th Fibonacci number. (As usual $f_0 = 0$, $f_1 = 1$, and $f_{m+1} = f_m + f_{m-1}$ for $m \ge 1$.)

Problem 4:

Construct regular expressions that match (generate) each of the following sets of strings.

a) The set of all binary strings that end with 0 and have even length, or start with 1 and have odd length.

b) The set of all binary strings that have a 1 in every even-numbered position counting from the start of the string with the start of the string counting as position 1.

Problem 5:

Construct regular expressions that match (generate) each of the following sets of strings.

- a) The set of all binary strings that contain at least two 1's and at most two 0's.
- b) The set of all binary strings that don't contain 001.

Problem 6:

Construct context-free grammars that generate the following sets of strings. For each of your constructions write a sentence or two to explain why your construction is correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.

- a) The set of all binary strings that contain at least two 0's and at most one 1.
- b) The set of all binary strings that are of odd length and have 1 as their middle character.

Problem 7:

If $a \in \Sigma$ is a symbol then the string a^n for $n \ge 0$ is the string consisting of n copies of a, one after another. Construct context-free grammars that generate the following sets of strings. For each of your constructions write a sentence or two to explain why your construction is correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.

- a) $\{1^m 0^n 1^{m+n} : m, n \ge 0\}.$
- b) $\{0^m 1^n 0^p : m, n, p \ge 0 \text{ and } m \ge n \text{ or } n \le p\}.$

Problem 8:

Define a grammar by $S \to SS \mid 0S1 \mid 1S0 \mid \lambda$. Use structural induction to prove that every string generated by S has an equal number of 0's and 1's.

Extra Credit 9:

For the grammar given in problem 8, use ordinary induction to prove that for every integer $n \ge 0$, every binary string of length n with an equal number of 0's and 1's can be generated from S.

Extra Credit 10:

Consider the set S_3 of strings in $\{0, 1, 2\}^*$ such that the sum of the values is congruent to 0 modulo 3, so

 $S_3 = \{\lambda, 0, 00, 12, 21, 000, 012, 021, 102, 111, 120, 201, 210, 222, \cdots\}.$

- a) Design a context-free grammar that generates S_3 .
- b) Design a regular expression that generates S_3 .