Homework 5, Due Wednesday, May 8, 2013

Problem 1:

Compute the GCD of 91 and 434 using the Euclidean Algorithm. Show the intermediate values that are computed.

Problem 2:

Use the Euclidean algorithm to solve the following problems:
a) Find an inverse of 4 modulo 21 .
b) Find an inverse of 5 modulo 18 .
c) Solve $13 x \equiv 7 \quad(\bmod 56)$ for x.

Problem 3:

Prove that for every integer n, there are n consecutive composite integers. [Hint: Consider the n consecutive integers starting with $(n+1)!+2$.]

Problem 4:

Prove that for every positive integer n,

$$
\sum_{i=1}^{n} i 2^{i}=(n-1) 2^{n+1}+2
$$

Problem 5:

Prove that 3 divides $n^{3}+2 n$ when n is a positive integer.

Problem 6:

Let x be any fixed real number with $x>-1$. Prove that $(1+x)^{n} \geq 1+n x$ for every integer $n \geq 0$.

Problem 7:

Let f_{n} be the n-th Fibonacci number where $f_{0}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$. Prove that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

for every positive integer n.

Extra Credit 8:

Two integers a and b are relatively prime if and only if $\operatorname{gcd}(a, b)=1$. Consider any $n+1$ numbers between 1 and $2 n$ (inclusive). Show that some pair of them are relatively prime.

