
CSE 311: Foundations of Computing

Fall 2013
Lecture 29: Wrap up

announcements

• Hand in Homework 9 now

– Pick up all old homework and exams now

• Review session

– Sunday, 3pm, EEB 125 

– List of Final Exam Topics and sampling of some 

typical kinds of exam questions on the web

– Bring your questions to the review session!

• Final exam

– Monday, 2:30-4:20 pm or 4:30-6:20, Kane 220

– Fill in Catalyst Survey by Sunday, 3pm to choose.

highlights: halting problem

H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>

highlights: “always halts” problem

A
1 if Q always halts

0 if Q sometimes does not halt<<<<Q>>>>



the “always ERROR” problem

• Given:Given:Given:Given: <RRRR>, the code of a program RRRR

• Output:Output:Output:Output: 1111 if RRRR always prints ERROR 
0000 if RRRR does not always print ERROR 

the “always ERROR” problem

A
1 if Q always halts

0 if Q does not always halt
<<<<Q>>>> HALT

Suppose we had a TM E for the ERROR problem

<<<<Q>>>> E
<<<<R>>>> 1 if Q always

halts

0 if Q does not

always halt
Q’s code 

…

end of Q

Convert’

Q’s code 
…

end of Q

Print ERROR

program equivalence

Input:  the codes of two programs, <PPPP> and <QQQQ>

Output: 1111 if PPPP produces the same output   

as QQQQ does on every input

0000 otherwise

general phenomenon: can’t tell a book by its cover

Rice’s Theorem:Rice’s Theorem:Rice’s Theorem:Rice’s Theorem: In general there is no way to tell 

anything about the input/output (IIII/OOOO) behavior of a 

program PPPP just given its code <PPPP>!



quick lessons

• Don’t rely on the idea of improved compilers 
and programming languages to eliminate 
major programming errors

– truly safe languages can’t possibly do general 
computation

• Document your code!!!!

– there is no way you can expect someone else to 
figure out what your program does with just 
your code ....since....in general it is provably 
impossible to do this!

CSE 311: Foundations of Computing

Fall 2013
The 10 minute version

about the course

• From the CSE catalog:

– CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4) ) ) ) 
Examines fundamentals of logic, set theory, 
induction, and algebraic structures with 
applications to computing; finite state 
machines; and limits of computability. 
Prerequisite: CSE 143; either MATH 126 or 
MATH 136. 

• What this course is about:

– Foundational structures for the practice of 
computer science and engineering

propositional logic

• Statements with truth values
– The Washington State flag is red

– It snowed in Whistler, BC on January 4, 
2011.

– Rick Perry won the Iowa straw poll

– Space aliens landed in Roswell, New 
Mexico

– If n is an integer greater than two, then 
the equation an + bn = cn has no 
solutions in non-zero integers a, b, and c.

– Propositional variables: p, q, r, s, . . . 

– Truth values: TTTT for true,  FFFF for false

– Compound propositions

Negation (not)        ¬ p

Conjunction (and)  p ∧ q

Disjunction (or)      p ∨ q

Exclusive or           p ⊕ q

Implication             p → q

Biconditional p ↔ q



english and logic

• You cannot ride the roller coaster if you are 

under 4 feet tall unless you are older than 

16 years old

– q: you can ride the roller coaster

– r: you are under 4 feet tall

– s: you are older than 16

( r ∧ ¬ s) → ¬ q

logical equivalence

• Terminology:  A compound proposition is a
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p ∨∨∨∨ ¬¬¬¬ p

p ⊕ p

(p → q) ∧ p

(p ∧ q) ∨ (p ∧ ¬ q) ∨ (¬ p ∧ q) ∨ (¬ p ∧ ¬ q) 

logical equivalence

• p and q are logically equivalent iff
p ↔ q is a tautology

• The notation p ≡ q denotes p and q are logically 
equivalent

• De Morgan’s Laws:

¬ (p ∧ q) ≡ ¬ p ∨ ¬ q

¬ (p ∨ q) ≡ ¬ p ∧ ¬ q

digital circuits

• Computing with logic

– TTTT corresponds to 1 or “high” voltage 

– FFFF corresponds to  0 or “low” voltage

• Gates 

– Take inputs and produce outputs
Functions

– Several kinds of gates

– Correspond to propositional connectives
Only symmetric ones (order of inputs irrelevant)



combinational logic circuits

OR

AND

AND

Wires can send one value to multiple gates

a simple example: 1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin  +  A Cin  +  A B 

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

= A’ (B’ Cin + B Cin’ ) + A (B’ Cin’ + B Cin )

= A’ Z + A Z’

= A xor Z = A xor (B xor Cin)

A A A A A

B B B B B

S S S S S

CinCout

boolean algebra

• An algebraic structure consists of

– a set of elements B

– binary operations { + , • }

– and a unary operation { ’ }

– such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b   is in B a • b   is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

George Boole – 1854

sum-of-products canonical forms

• Also known as disjunctive normal form

• Also known as minterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F =  001      011      101       110       111

+ A’BC + AB’C + ABC’ + ABCA’B’C



predicate calculus

• Predicate or Propositional Function

– A function that returns a truth value

• “x is a cat”

• “student x has taken course y”

• “x > y”

• ∀ x P(x) : P(x) is true for every x in the 

domain

• ∃ x P(x) : There is an x in the domain for 

which P(x) is true

statements with quantifiers

• ∀ x (Even(x) ∨ Odd(x))

• ∃ x (Even(x) ∧ Prime(x))

• ∀ x ∃ y (Greater(y, x) ∧ Prime(y))

• ∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x))

• ∃ x ∃ y(Equal(x, y + 2) ∧ Prime(x) ∧ Prime(y)) 

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the 

set

simple propositional inference rules

• Excluded middle 

• Two inference rules per binary connective one to 

eliminate it, one to introduce it.

p ∧ q

∴ p, q

p, q   

∴ p ∧ q 

p           

∴ p ∨ q, q ∨ p

p ∨ q , ¬p

∴ q

p, p→q

∴ q

p⇒q  

∴ p→q

Direct Proof Rule

∴ p ∨¬p 



inference rules for quantifiers

P(c) for some c

∴ ∃ x P(x)

∀ x P(x)        

∴ P(a) for any a

“Let a be anything”...P(a)

∴ ∀ x P(x)

∃ x P(x)               

∴ P(c) for some special c

even and odd

• Prove: “The square of every odd number is odd”

English proof of: ∀x (Odd(x)→Odd(x2))

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1.

Since 2k2+2k is an integer, x2 is odd.   �

Even(x) ≡ ∃∃∃∃y  (x=2y)     

Odd(x) ≡ ∃∃∃∃y  (x=2y+1)

Domain: Integers

characteristic vectors

• Let U = {1, . . ., 10}, represent the set 

{1,3,4,8,9} with 

• Bit operations: 

– 0110110100 ∨ 0011010110 = 0111110110

• ls –l

drwxr-xr-x ... Documents/

-rw-r--r-- ... file1

1011000110

one-time pad

• Alice and Bob privately share random n-bit vector K

– Eve does not know K

• Later, Alice has n-bit message m to send to Bob

– Alice computes  C = m ⊕ K

– Alice sends C to Bob

– Bob computes m = C ⊕ K which is (m ⊕ K) ⊕ K

• Eve cannot figure out m from C unless she can guess K



arithmetic mod 7

• a +7 b = (a + b) mod 7

• a ×7 b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

division theorem

Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = dq + r.

q = a div d r = a mod d

modular arithmetic

Let a and b be integers, and m be a positive integer.  

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m.

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if a mod m = b mod m.

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then

a + c ≡ b + d (mod m)    and      

ac ≡ bd (mod m)

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if 

a mod m = b mod m.

integer representation

Signed integer representation
Suppose -2n-1 < x < 2n-1

First bit as the sign, n-1 bits for the value

99:    0110 0011,              -18:   1001  0010

Two’s complement representation
Suppose 0 ≤ x < 2n-1,  

x is represented by the binary representation of x

-x is represented by the binary representation of 2n-x

99:    0110  0011,              -18:   1110 1110



hashing

• Map values from a large domain, 0…M-1 in 

a much smaller domain, 0…n-1

• Index lookup

• Test for equality

• Hash(x) = x mod p  

– (or Hash(x) = (ax + b) mod p)

• Often want the hash function to depend on 

all of the bits of the data

– Collision management

modular exponentiation

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

Arithmetic mod 7

fast exponentiation: repeated squaring primality

An integer p greater than 1 is called prime if the 

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 

prime is called composite.

Fundamental Theorem of Arithmetic: Every 

positive integer greater than 1 has a unique 

prime factorization



gcd and factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1)

• 11min(1,0) • 13min(0,1)

euclid’s algorithm

• GCD(x, y) = GCD(y, x mod y)

int GCD(int a, int b){   /* a >= b,   b > 0 */

int tmp;

int x = a;

int y = b;

while (y > 0){

tmp = x % y;

x = y;

y = tmp;

}

return x;

}

multiplicative inverse mod m

Suppose GCD(a, m) = 1

By Bézoit’s Theorem, there exist integers s 

and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a:

1 = (sa + tm) mod m = sa mod m

induction proofs

P(0)

∀ k (P(k) → P(k+1))

∴ ∀ n P(n)

1. Prove P(0)

2.Let k be an arbitrary integer ≥ 0

3.  Assume that P(k) is true

4.  ...

5.  Prove P(k+1) is true

6.P(k) → P(k+1)                         Direct Proof Rule

7. ∀ k (P(k) → P(k+1))                 Intro ∀ from 2-6

8. ∀ n P(n)                                   Induction Rule 1&7



strong induction

P(0)

∀∀∀∀ k ((P(0) ∧∧∧∧ P(1) ∧∧∧∧ P(2) ∧∧∧∧ … ∧∧∧∧ P(k)) → P(k+1))

∴ ∀∀∀∀ n P(n)

recursive definitions of functions

• F(0) = 0;  F(n + 1) = F(n) + 1;

• G(0) = 1;  G(n + 1) =  2 × G(n);

• 0! = 1;  (n+1)! = (n+1) × n!

• f0 = 0; f1 = 1; fn = fn-1 + fn-2

strings

• The set Σ* of strings over the alphabet Σ is 
defined
– Basis:  λ ∈ S  (λ is the empty string)

– Recursive:  if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

• Palindromes: strings that are the same 
backwards and forwards.
– Basis: λ is a palindrome and any a ∈ Σ is a 

palindrome

– If p is a palindrome then apa is a palindrome for 
every a ∈ Σ

function definitions on recursively defined sets

Len(λ) = 0;

Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ*

Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

Prove:

Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y



rooted binary trees

• Basis:   ● is a rooted binary tree

• Recursive Step:   If             and          are 

rooted 

binary trees                                                            

then so is:   

T1 T2

T1 T2

functions defined on rooted binary trees

• size(●)=1

• size(              ) = 1+size(T1)+size(T2)

• height(●)=0

• height(             )=1+max{height(T1),height(T2)}

T1 T2

T1 T2

Prove:

For every rooted binary tree T, size(T) ≤ 2height(T)+1 -1

regular expressions over Σ

• Each is a “pattern” that specifies a set of strings

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– aaaa is a regular expression for any a ∈ Σ

• Recursive step:

– If AAAA and BBBB are regular expressions then so are:

(A ∪ B)

(AB)

A*

regular expressions

• 0*    0*    0*    0*    

• 0*1*0*1*0*1*0*1*

• (0 0 0 0 ∪ 1111)* * * * 

• (0*1*0*1*0*1*0*1*)****

• (0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)****

• (0 0 0 0 ∪ 1111)* * * * (0110011001100110 ∪ 100100100100)(0 0 0 0 ∪ 1111)****



context-free grammars

• Example:       S S S S → 0SSSS0 | 1SSSS1 | 0 | 1 | λ

• Example:      S S S S → 0SSSS | SSSS1 | λ

context-free grammars

• Grammar for {0n1n : n≥ 0}  all strings with 

same # of 0’s and 1’s with all 0’s before 1’s.

• Example:       S S S S → ((((SSSS)))) | SSSSSSSS |  λ

precedence in simple arithmetic expressions

• EEEE – expression  (start symbol)

• TTTT – term   FFFF – factor   IIII – identifier  NNNN - number

EEEE→ TTTT | EEEE+TTTT

TTTT→ FFFF | FFFF*TTTT

FFFF→ (EEEE) | IIII | NNNN

I I I I → x | y | z

NNNN→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

bnf grammar for c



definitions for relations

Let A and B be sets,  

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Let R be a relation on A

combining relations

Let R be a relation from A to B

Let S be a relation from B to C

The composite of R and S,  S ° R is the relation 

from A to C defined

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

relations

(a,b)∈ Parent:  b is a parent of a

(a,b)∈ Sister:  b is a sister of a

Aunt = Sister ° Parent

Grandparent = Parent ° Parent

R2 = R ° R = {(a, c) | ∃ b such that (a,b)∈ R and 
(b,c)∈ R}

R0 = {(a,a) | a ∈ A}

R1 = R

Rn+1 = Rn ° R

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

n-ary relations

Student_ID Name GPA

328012098 Knuth 4.00

481080220 Von Neuman 3.78

238082388 Russell 3.85

238001920 Einstein 2.11

1727017 Newton 3.61

348882811 Karp 3.98

2921938 Bernoulli 3.21

2921939 Bernoulli 3.54

Student_ID Major

328012098 CS

481080220 CS

481080220 Mathematics

238082388 Philosophy

238001920 Physics

1727017 Mathematics

348882811 CS

1727017 Physics

2921938 Mathematics

2921939 Mathematics

Let A1, A2, …, An be sets.  An n-ary relation on 

these sets is a subset of A1× A2× . . . × An.



matrix representation for relations

Relation R on  A={a1, … ap}  

{(1, 1), (1, 2),  (1, 4),  (2,1),  (2,3), (3,2), (3, 3) (4,2) (4,3)}

1 1 0 1

1 0 1 0

0 0 1 0

0 1 1 0

representation of relations

Directed Graph Representation   (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }

a

d

e

b c

paths in relations

Let R be a relation on a set A.  There is a path of length n from 

a to b if and only if (a,b) ∈Rn

(a,b) is in the transitive-reflexive closure of R if and only if 

there is a path from a to b.  (Note: by definition, there is a 

path of length 0 from a to a.)

finite state machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is the 

set of strings that reach a final state

s0 s2 s3s1

111

1

0,1

0

0

0
State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3



accept strings with odd # of 1’s and odd # of 0’s

s0

s2 s3

s1

1

1

1

1

0

0

0

0

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

accept strings with a 1 three positions from the end

product construction

– Combining FSMs to check two properties at 

once

New states record states of both FSMs

s0 s1

0,1

2

2

0,1

t0 t2

t1

2

2

2

0

0

0

1 1

1

s0

t0

s1

t0

s1

t2

s0

t1

s0

t2

s1

t1

2

2

2

2

2

2

1

1

1

1

1

1
0

0 0

0 0

0

state machines with output

Input Output

State L R

s1 s1 s2 Beep

s2 s1 s3

s3 s2 s4

s4 s3 s4 Beep

S3
S4S1 S2

R

L

R

L

R

L

L

R

“Tug-of-war”

BeepBeep



vending machine

Enter 15 cents in dimes or nickels

Press S or B for a candy bar

vending machine, final version

0’   

B
5 10

15

15’

N

0

0”     

S

N

N

N

N

N

B

D

D

D

D

D B

S

S

15” 

DS

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

state minimization

Finite State Machines with output at states

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0

[1]

S2

[1]

S1

[0]

S3

[0]

1,3

another way to look at DFAs

s0 s2 s3s1

111

0,1

0

0

0

Lemma:  x is in the language recognized by a DFA iff

x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the 

concatenation of all the labels on its edges in order



nondeterministic finite automaton (NFA)

• Graph with start state, final states, edges labeled 

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state 

labeled by each symbol  - can have 0 or >1

– Also can have edges labeled by empty string λλλλ

• Definition: x is in the language recognized by an 

NFA iff x labels a path from the start state to some 

final state

s0 s2 s3s1

111

0,10,1

nondeterministic finite automaton

s0 s2 s3s1

0,10,11

0,1

Accepts strings with a 1 three positions from the 

end of the string

building a NFA from a regular expression

(01 ∪∪∪∪1)*0

0
λλλλ

λλλλ

λλλλ

λλλλ

0

1

1

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

NFA to DFA: subset construction

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0



binary palindromes B cannot be recognized by any DFA

Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}

Claim: No two strings in S can end at the same   

state of any DFA for B, so no such DFA can exist

Proof: Suppose n≠m and 0nnnn and 0mmmm end at the 
same            state p.   

Since 0nnnn10nnnn is in B, following 10nnnn after state p 
must lead to a final state.

But then the DFA would accept 0mmmm10nnnn

which is a contradiction

cardinality

• A set S is countable iff we can write it as       

S={s1, s2, s3, ...} indexed by ℕℕℕℕ

• Set of integers is countable

– {0, 1, -1, 2, -2, 3, -3, 4, . . .}

• Set of rationals is countable

– “dovetailing”

• Σ* is countable

– {0,1}* = 

{0,1,00,01,10,11,000,001,010,011,100,101,...}

• Set of all (Java) programs is countable

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5 ....

... ... ... ... ...

the real numbers are not countable

• “diagonalization”

general models of computation

Control structures with infinite storage

Many models

Turing machines

Functional

Recursion

Java programs

ChurchChurchChurchChurch----Turing ThesisTuring ThesisTuring ThesisTuring Thesis
Any reasonable model of computation that includes all possible 

algorithms is equivalent in power to a Turing machine



what is a turing machine? universal turing machine

• The Universal Turing Machine UUUU

– Takes as input: (<PPPP>,xxxx) where <PPPP> is the code

of a program and xxxx is an input string

– Simulates PPPP on input xxxx

• Same as a Program Interpreter

P
input

x
output

P(x) U
x output

P(x)
<<<<P>>>>

halting problem

• Given: the code of a program PPPP and an input 

xxxx for PPPP, i.e. given (<PPPP>,xxxx)

• Output: 1111 if PPPP halts on input xxxx

0000 if PPPP does not halt on input xxxx

TheoremTheoremTheoremTheorem (Turing): There is no program that 

solves the halting problem 

“The halting problem is undecidable”

DDDD halts on input <DDDD>

HHHH outputs 1111 on input (<DDDD>,<DDDD>) 

[since HHHH solves the halting problem and so    

HHHH(<DDDD>,xxxx) outputs 1111 iff DDDD halts on input xxxx]

DDDD runs forever on input <DDDD>

[since DDDD goes into an infinite loop on xxxx iff HHHH(xxxx,xxxx)=1111]

Function D(x):

if H(x,x)=1 then

while (true); /* loop forever */

else

no-op; /* do nothing and halt */

endif

Does D halt on input <D>?

suppose H(<P>,x) solves the halting problem



program equivalence

Input:  the codes of two programs, <PPPP> and <QQQQ>

Output: 1111 if PPPP produces the same output   

as QQQQ does on every input

0000 otherwise

The equivalent program  

problem is undecidable

That’s all folks!

Teaching evaluation

• Please answer the questions on both sides 

of the form.  This includes the ABET 

questions on the back


