
CSE 311: Foundations of Computing

Fall 2013
Lecture 29: Wrap up

announcements

• Hand in Homework 9 now

– Pick up all old homework and exams now

• Review session

– Sunday, 3pm, EEB 125

– List of Final Exam Topics and sampling of some

typical kinds of exam questions on the web

– Bring your questions to the review session!

• Final exam

– Monday, 2:30-4:20 pm or 4:30-6:20, Kane 220

– Fill in Catalyst Survey by Sunday, 3pm to choose.

highlights: halting problem

H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>

highlights: “always halts” problem

A
1 if Q always halts

0 if Q sometimes does not halt<<<<Q>>>>

the “always ERROR” problem

• Given:Given:Given:Given: <RRRR>, the code of a program RRRR

• Output:Output:Output:Output: 1111 if RRRR always prints ERROR
0000 if RRRR does not always print ERROR

the “always ERROR” problem

A
1 if Q always halts

0 if Q does not always halt
<<<<Q>>>> HALT

Suppose we had a TM E for the ERROR problem

<<<<Q>>>> E
<<<<R>>>> 1 if Q always

halts

0 if Q does not

always halt
Q’s code

…

end of Q

Convert’

Q’s code
…

end of Q

Print ERROR

program equivalence

Input: the codes of two programs, <PPPP> and <QQQQ>

Output: 1111 if PPPP produces the same output

as QQQQ does on every input

0000 otherwise

general phenomenon: can’t tell a book by its cover

Rice’s Theorem:Rice’s Theorem:Rice’s Theorem:Rice’s Theorem: In general there is no way to tell

anything about the input/output (IIII/OOOO) behavior of a

program PPPP just given its code <PPPP>!

quick lessons

• Don’t rely on the idea of improved compilers
and programming languages to eliminate
major programming errors

– truly safe languages can’t possibly do general
computation

• Document your code!!!!

– there is no way you can expect someone else to
figure out what your program does with just
your codesince....in general it is provably
impossible to do this!

CSE 311: Foundations of Computing

Fall 2013
The 10 minute version

about the course

• From the CSE catalog:

– CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4))))
Examines fundamentals of logic, set theory,
induction, and algebraic structures with
applications to computing; finite state
machines; and limits of computability.
Prerequisite: CSE 143; either MATH 126 or
MATH 136.

• What this course is about:

– Foundational structures for the practice of
computer science and engineering

propositional logic

• Statements with truth values
– The Washington State flag is red

– It snowed in Whistler, BC on January 4,
2011.

– Rick Perry won the Iowa straw poll

– Space aliens landed in Roswell, New
Mexico

– If n is an integer greater than two, then
the equation an + bn = cn has no
solutions in non-zero integers a, b, and c.

– Propositional variables: p, q, r, s, . . .

– Truth values: TTTT for true, FFFF for false

– Compound propositions

Negation (not) ¬ p

Conjunction (and) p ∧ q

Disjunction (or) p ∨ q

Exclusive or p ⊕ q

Implication p → q

Biconditional p ↔ q

english and logic

• You cannot ride the roller coaster if you are

under 4 feet tall unless you are older than

16 years old

– q: you can ride the roller coaster

– r: you are under 4 feet tall

– s: you are older than 16

(r ∧ ¬ s) → ¬ q

logical equivalence

• Terminology: A compound proposition is a
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p ∨∨∨∨ ¬¬¬¬ p

p ⊕ p

(p → q) ∧ p

(p ∧ q) ∨ (p ∧ ¬ q) ∨ (¬ p ∧ q) ∨ (¬ p ∧ ¬ q)

logical equivalence

• p and q are logically equivalent iff
p ↔ q is a tautology

• The notation p ≡ q denotes p and q are logically
equivalent

• De Morgan’s Laws:

¬ (p ∧ q) ≡ ¬ p ∨ ¬ q

¬ (p ∨ q) ≡ ¬ p ∧ ¬ q

digital circuits

• Computing with logic

– TTTT corresponds to 1 or “high” voltage

– FFFF corresponds to 0 or “low” voltage

• Gates

– Take inputs and produce outputs
Functions

– Several kinds of gates

– Correspond to propositional connectives
Only symmetric ones (order of inputs irrelevant)

combinational logic circuits

OR

AND

AND

Wires can send one value to multiple gates

a simple example: 1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

= A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)

= A’ Z + A Z’

= A xor Z = A xor (B xor Cin)

A A A A A

B B B B B

S S S S S

CinCout

boolean algebra

• An algebraic structure consists of

– a set of elements B

– binary operations { + , • }

– and a unary operation { ’ }

– such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

George Boole – 1854

sum-of-products canonical forms

• Also known as disjunctive normal form

• Also known as minterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABCA’B’C

predicate calculus

• Predicate or Propositional Function

– A function that returns a truth value

• “x is a cat”

• “student x has taken course y”

• “x > y”

• ∀ x P(x) : P(x) is true for every x in the

domain

• ∃ x P(x) : There is an x in the domain for

which P(x) is true

statements with quantifiers

• ∀ x (Even(x) ∨ Odd(x))

• ∃ x (Even(x) ∧ Prime(x))

• ∀ x ∃ y (Greater(y, x) ∧ Prime(y))

• ∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x))

• ∃ x ∃ y(Equal(x, y + 2) ∧ Prime(x) ∧ Prime(y))

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the

set

simple propositional inference rules

• Excluded middle

• Two inference rules per binary connective one to

eliminate it, one to introduce it.

p ∧ q

∴ p, q

p, q

∴ p ∧ q

p

∴ p ∨ q, q ∨ p

p ∨ q , ¬p

∴ q

p, p→q

∴ q

p⇒q

∴ p→q

Direct Proof Rule

∴ p ∨¬p

inference rules for quantifiers

P(c) for some c

∴ ∃ x P(x)

∀ x P(x)

∴ P(a) for any a

“Let a be anything”...P(a)

∴ ∀ x P(x)

∃ x P(x)

∴ P(c) for some special c

even and odd

• Prove: “The square of every odd number is odd”

English proof of: ∀x (Odd(x)→Odd(x2))

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1.

Since 2k2+2k is an integer, x2 is odd. �

Even(x) ≡ ∃∃∃∃y (x=2y)

Odd(x) ≡ ∃∃∃∃y (x=2y+1)

Domain: Integers

characteristic vectors

• Let U = {1, . . ., 10}, represent the set

{1,3,4,8,9} with

• Bit operations:

– 0110110100 ∨ 0011010110 = 0111110110

• ls –l

drwxr-xr-x ... Documents/

-rw-r--r-- ... file1

1011000110

one-time pad

• Alice and Bob privately share random n-bit vector K

– Eve does not know K

• Later, Alice has n-bit message m to send to Bob

– Alice computes C = m ⊕ K

– Alice sends C to Bob

– Bob computes m = C ⊕ K which is (m ⊕ K) ⊕ K

• Eve cannot figure out m from C unless she can guess K

arithmetic mod 7

• a +7 b = (a + b) mod 7

• a ×7 b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

division theorem

Let a be an integer and d a positive integer.

Then there are unique integers q and r, with

0 ≤ r < d, such that a = dq + r.

q = a div d r = a mod d

modular arithmetic

Let a and b be integers, and m be a positive integer.

We say a is congruent to b modulo m if m divides a – b.

We use the notation a ≡ b (mod m) to indicate that a is

congruent to b modulo m.

Let a and b be integers, and let m be a positive integer.

Then a ≡ b (mod m) if and only if a mod m = b mod m.

Let m be a positive integer. If a ≡ b (mod m) and

c ≡ d (mod m), then

a + c ≡ b + d (mod m) and

ac ≡ bd (mod m)

Let a and b be integers, and let m be a positive integer.

Then a ≡ b (mod m) if and only if

a mod m = b mod m.

integer representation

Signed integer representation
Suppose -2n-1 < x < 2n-1

First bit as the sign, n-1 bits for the value

99: 0110 0011, -18: 1001 0010

Two’s complement representation
Suppose 0 ≤ x < 2n-1,

x is represented by the binary representation of x

-x is represented by the binary representation of 2n-x

99: 0110 0011, -18: 1110 1110

hashing

• Map values from a large domain, 0…M-1 in

a much smaller domain, 0…n-1

• Index lookup

• Test for equality

• Hash(x) = x mod p

– (or Hash(x) = (ax + b) mod p)

• Often want the hash function to depend on

all of the bits of the data

– Collision management

modular exponentiation

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

Arithmetic mod 7

fast exponentiation: repeated squaring primality

An integer p greater than 1 is called prime if the

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not

prime is called composite.

Fundamental Theorem of Arithmetic: Every

positive integer greater than 1 has a unique

prime factorization

gcd and factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1)

• 11min(1,0) • 13min(0,1)

euclid’s algorithm

• GCD(x, y) = GCD(y, x mod y)

int GCD(int a, int b){ /* a >= b, b > 0 */

int tmp;

int x = a;

int y = b;

while (y > 0){

tmp = x % y;

x = y;

y = tmp;

}

return x;

}

multiplicative inverse mod m

Suppose GCD(a, m) = 1

By Bézoit’s Theorem, there exist integers s

and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a:

1 = (sa + tm) mod m = sa mod m

induction proofs

P(0)

∀ k (P(k) → P(k+1))

∴ ∀ n P(n)

1. Prove P(0)

2.Let k be an arbitrary integer ≥ 0

3. Assume that P(k) is true

4. ...

5. Prove P(k+1) is true

6.P(k) → P(k+1) Direct Proof Rule

7. ∀ k (P(k) → P(k+1)) Intro ∀ from 2-6

8. ∀ n P(n) Induction Rule 1&7

strong induction

P(0)

∀∀∀∀ k ((P(0) ∧∧∧∧ P(1) ∧∧∧∧ P(2) ∧∧∧∧ … ∧∧∧∧ P(k)) → P(k+1))

∴ ∀∀∀∀ n P(n)

recursive definitions of functions

• F(0) = 0; F(n + 1) = F(n) + 1;

• G(0) = 1; G(n + 1) = 2 × G(n);

• 0! = 1; (n+1)! = (n+1) × n!

• f0 = 0; f1 = 1; fn = fn-1 + fn-2

strings

• The set Σ* of strings over the alphabet Σ is
defined
– Basis: λ ∈ S (λ is the empty string)

– Recursive: if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

• Palindromes: strings that are the same
backwards and forwards.
– Basis: λ is a palindrome and any a ∈ Σ is a

palindrome

– If p is a palindrome then apa is a palindrome for
every a ∈ Σ

function definitions on recursively defined sets

Len(λ) = 0;

Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ*

Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

Prove:

Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y

rooted binary trees

• Basis: ● is a rooted binary tree

• Recursive Step: If and are

rooted

binary trees

then so is:

T1 T2

T1 T2

functions defined on rooted binary trees

• size(●)=1

• size() = 1+size(T1)+size(T2)

• height(●)=0

• height()=1+max{height(T1),height(T2)}

T1 T2

T1 T2

Prove:

For every rooted binary tree T, size(T) ≤ 2height(T)+1 -1

regular expressions over Σ

• Each is a “pattern” that specifies a set of strings

• Basis:

– ∅∅∅∅, λλλλ are regular expressions

– aaaa is a regular expression for any a ∈ Σ

• Recursive step:

– If AAAA and BBBB are regular expressions then so are:

(A ∪ B)

(AB)

A*

regular expressions

• 0* 0* 0* 0*

• 0*1*0*1*0*1*0*1*

• (0 0 0 0 ∪ 1111)* * * *

• (0*1*0*1*0*1*0*1*)****

• (0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)****

• (0 0 0 0 ∪ 1111)* * * * (0110011001100110 ∪ 100100100100)(0 0 0 0 ∪ 1111)****

context-free grammars

• Example: S S S S → 0SSSS0 | 1SSSS1 | 0 | 1 | λ

• Example: S S S S → 0SSSS | SSSS1 | λ

context-free grammars

• Grammar for {0n1n : n≥ 0} all strings with

same # of 0’s and 1’s with all 0’s before 1’s.

• Example: S S S S → ((((SSSS)))) | SSSSSSSS | λ

precedence in simple arithmetic expressions

• EEEE – expression (start symbol)

• TTTT – term FFFF – factor IIII – identifier NNNN - number

EEEE→ TTTT | EEEE+TTTT

TTTT→ FFFF | FFFF*TTTT

FFFF→ (EEEE) | IIII | NNNN

I I I I → x | y | z

NNNN→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

bnf grammar for c

definitions for relations

Let A and B be sets,

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Let R be a relation on A

combining relations

Let R be a relation from A to B

Let S be a relation from B to C

The composite of R and S, S ° R is the relation

from A to C defined

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

relations

(a,b)∈ Parent: b is a parent of a

(a,b)∈ Sister: b is a sister of a

Aunt = Sister ° Parent

Grandparent = Parent ° Parent

R2 = R ° R = {(a, c) | ∃ b such that (a,b)∈ R and
(b,c)∈ R}

R0 = {(a,a) | a ∈ A}

R1 = R

Rn+1 = Rn ° R

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

n-ary relations

Student_ID Name GPA

328012098 Knuth 4.00

481080220 Von Neuman 3.78

238082388 Russell 3.85

238001920 Einstein 2.11

1727017 Newton 3.61

348882811 Karp 3.98

2921938 Bernoulli 3.21

2921939 Bernoulli 3.54

Student_ID Major

328012098 CS

481080220 CS

481080220 Mathematics

238082388 Philosophy

238001920 Physics

1727017 Mathematics

348882811 CS

1727017 Physics

2921938 Mathematics

2921939 Mathematics

Let A1, A2, …, An be sets. An n-ary relation on

these sets is a subset of A1× A2× . . . × An.

matrix representation for relations

Relation R on A={a1, … ap}

{(1, 1), (1, 2), (1, 4), (2,1), (2,3), (3,2), (3, 3) (4,2) (4,3)}

1 1 0 1

1 0 1 0

0 0 1 0

0 1 1 0

representation of relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a

d

e

b c

paths in relations

Let R be a relation on a set A. There is a path of length n from

a to b if and only if (a,b) ∈Rn

(a,b) is in the transitive-reflexive closure of R if and only if

there is a path from a to b. (Note: by definition, there is a

path of length 0 from a to a.)

finite state machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is the

set of strings that reach a final state

s0 s2 s3s1

111

1

0,1

0

0

0
State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

accept strings with odd # of 1’s and odd # of 0’s

s0

s2 s3

s1

1

1

1

1

0

0

0

0

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

accept strings with a 1 three positions from the end

product construction

– Combining FSMs to check two properties at

once

New states record states of both FSMs

s0 s1

0,1

2

2

0,1

t0 t2

t1

2

2

2

0

0

0

1 1

1

s0

t0

s1

t0

s1

t2

s0

t1

s0

t2

s1

t1

2

2

2

2

2

2

1

1

1

1

1

1
0

0 0

0 0

0

state machines with output

Input Output

State L R

s1 s1 s2 Beep

s2 s1 s3

s3 s2 s4

s4 s3 s4 Beep

S3
S4S1 S2

R

L

R

L

R

L

L

R

“Tug-of-war”

BeepBeep

vending machine

Enter 15 cents in dimes or nickels

Press S or B for a candy bar

vending machine, final version

0’

B
5 10

15

15’

N

0

0”

S

N

N

N

N

N

B

D

D

D

D

D B

S

S

15”

DS

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

state minimization

Finite State Machines with output at states

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0

[1]

S2

[1]

S1

[0]

S3

[0]

1,3

another way to look at DFAs

s0 s2 s3s1

111

0,1

0

0

0

Lemma: x is in the language recognized by a DFA iff

x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the

concatenation of all the labels on its edges in order

nondeterministic finite automaton (NFA)

• Graph with start state, final states, edges labeled

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol - can have 0 or >1

– Also can have edges labeled by empty string λλλλ

• Definition: x is in the language recognized by an

NFA iff x labels a path from the start state to some

final state

s0 s2 s3s1

111

0,10,1

nondeterministic finite automaton

s0 s2 s3s1

0,10,11

0,1

Accepts strings with a 1 three positions from the

end of the string

building a NFA from a regular expression

(01 ∪∪∪∪1)*0

0
λλλλ

λλλλ

λλλλ

λλλλ

0

1

1

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

NFA to DFA: subset construction

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

binary palindromes B cannot be recognized by any DFA

Consider the infinite set of strings

S={λλλλ, 0, 00, 000, 0000, ...}

Claim: No two strings in S can end at the same

state of any DFA for B, so no such DFA can exist

Proof: Suppose n≠m and 0nnnn and 0mmmm end at the
same state p.

Since 0nnnn10nnnn is in B, following 10nnnn after state p
must lead to a final state.

But then the DFA would accept 0mmmm10nnnn

which is a contradiction

cardinality

• A set S is countable iff we can write it as

S={s1, s2, s3, ...} indexed by ℕℕℕℕ

• Set of integers is countable

– {0, 1, -1, 2, -2, 3, -3, 4, . . .}

• Set of rationals is countable

– “dovetailing”

• Σ* is countable

– {0,1}* =

{0,1,00,01,10,11,000,001,010,011,100,101,...}

• Set of all (Java) programs is countable

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5

...

the real numbers are not countable

• “diagonalization”

general models of computation

Control structures with infinite storage

Many models

Turing machines

Functional

Recursion

Java programs

ChurchChurchChurchChurch----Turing ThesisTuring ThesisTuring ThesisTuring Thesis
Any reasonable model of computation that includes all possible

algorithms is equivalent in power to a Turing machine

what is a turing machine? universal turing machine

• The Universal Turing Machine UUUU

– Takes as input: (<PPPP>,xxxx) where <PPPP> is the code

of a program and xxxx is an input string

– Simulates PPPP on input xxxx

• Same as a Program Interpreter

P
input

x
output

P(x) U
x output

P(x)
<<<<P>>>>

halting problem

• Given: the code of a program PPPP and an input

xxxx for PPPP, i.e. given (<PPPP>,xxxx)

• Output: 1111 if PPPP halts on input xxxx

0000 if PPPP does not halt on input xxxx

TheoremTheoremTheoremTheorem (Turing): There is no program that

solves the halting problem

“The halting problem is undecidable”

DDDD halts on input <DDDD>

HHHH outputs 1111 on input (<DDDD>,<DDDD>)

[since HHHH solves the halting problem and so

HHHH(<DDDD>,xxxx) outputs 1111 iff DDDD halts on input xxxx]

DDDD runs forever on input <DDDD>

[since DDDD goes into an infinite loop on xxxx iff HHHH(xxxx,xxxx)=1111]

Function D(x):

if H(x,x)=1 then

while (true); /* loop forever */

else

no-op; /* do nothing and halt */

endif

Does D halt on input <D>?

suppose H(<P>,x) solves the halting problem

program equivalence

Input: the codes of two programs, <PPPP> and <QQQQ>

Output: 1111 if PPPP produces the same output

as QQQQ does on every input

0000 otherwise

The equivalent program

problem is undecidable

That’s all folks!

Teaching evaluation

• Please answer the questions on both sides

of the form. This includes the ABET

questions on the back

