CSE 311: Foundations of Computing announcements Fall 2013 Hand in Homework 9 now Lecture 29: Wrap up - Pick up all old homework and exams now Review session - Sunday, 3pm, EEB 125 - List of Final Exam Topics and sampling of some typical kinds of exam questions on the web - Bring your questions to the review session! • Final exam - Monday, 2:30-4:20 pm or 4:30-6:20, Kane 220 - Fill in Catalyst Survey by Sunday, 3pm to choose. highlights: halting problem highlights: "always halts" problem 1 if P(x) halts **1** if **Q** always halts **0** if **Q** sometimes does not halt н <Q> → A 0 if P(x) does not halt

the "always ERROR" problem

- Given: <R>, the code of a program R
- Output: 1 if R always prints ERROR 0 if R does not always print ERROR

program equivalence

Input: the codes of two programs, <P> and <Q> Output: 1 if P produces the same output as Q does on every input 0 otherwise general phenomenon: can't tell a book by its cover

Rice's Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given its code <P>!

quick lessons

- Don't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code!!!!
 - there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

CSE 311: Foundations of Computing

Fall 2013 The 10 minute version

about the course

- From the CSE catalog:
 - CSE 311 Foundations of Computing I (4)
 Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability.
 Prerequisite: CSE 143; either MATH 126 or MATH 136.
- What this course is about:
 - Foundational structures for the practice of computer science and engineering

propositional logic

 Statements with truth values The Washington State flag is red - It snowed in Whistler, BC on January 4, 2011. Rick Perry won the lowa straw poll Space aliens landed in Roswell, New Mexico If n is an integer greater than two, then the equation $a^n + b^n = c^n$ has no solutions in non-zero integers a, b, and Negation (not) ¬p - Propositional variables: p, q, r, s, ... Conjunction (and) $p \wedge q$ - Truth values: T for true. F for false Disjunction (or) $p \lor q$ - Compound propositions Exclusive or $p \oplus q$ Implication $p \rightarrow q$ Biconditional $p \leftrightarrow q$

english and logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - -q: you can ride the roller coaster
 - r: you are under 4 feet tall
 - -s: you are older than 16

$(r \land \neg s) \rightarrow \neg q$

logical equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

 $p \lor \neg p$

 $p \oplus p$

 $(p \rightarrow q) \land p$

 $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

logical equivalence

- *p* and *q* are logically equivalent iff
 p ↔ *q* is a tautology
- The notation *p* = *q* denotes *p* and *q* are logically equivalent
- De Morgan's Laws:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

digital circuits

- Computing with logic
 - -T corresponds to 1 or "high" voltage
 - F corresponds to 0 or "low" voltage
- Gates
 - Take inputs and produce outputs Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 Only symmetric ones (order of inputs irrelevant)

predicate calculus

- Predicate or Propositional Function
 - A function that returns a truth value
- "*x* is a cat"
- "student x has taken course y"
- "x > y"
- ∀ x P(x) : P(x) is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which P(x) is true

statements with quantifiers

- $\forall x (Even(x) \lor Odd(x))$
- $\exists x (Even(x) \land Prime(x))$
- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (\operatorname{Prime}(x) \rightarrow (\operatorname{Equal}(x, 2) \lor \operatorname{Odd}(x)))$
- $\exists x \exists y (Equal(x, y + 2) \land Prime(x) \land Prime(y))$

Domain:

Even(x) Odd(x)

Prime(x) Greater(x,y)

Equal(x,y)

Positive Integers

proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

simple propositional inference rules

- Excluded middle $\therefore p \lor \neg p$
- Two inference rules per binary connective one to eliminate it, one to introduce it.

inference rules for quantifiers $P(c)$ for some c $\therefore \exists x P(x)$ $\forall x P(x)$ $\therefore \exists x P(x)$ $\therefore P(a)$ for any a <u>"Let a be anything"P(a)</u> $\therefore \forall x P(x)$ $\exists x P(x)$ $\therefore \forall x P(x)$ $\therefore P(c)$ for some special c	even and oddEven(x) = $\exists y (x=2y)$ $Odd(x) = \exists y (x=2y+1)$ Domain: Integers• Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$ Let x be an odd number. Then x=2k+1 for some integer k (depending on x) Therefore x²=(2k+1)²= 4k²+4k+1=2(2k²+2k)+1. Since 2k²+2k is an integer, x² is odd.
$\frac{\text{characteristic vectors}}{\text{- Let U} = \{1, \dots, 10\}, \text{ represent the set } \\ \{1,3,4,8,9\} \text{ with} \\ 1011000110 \\ \text{ Bit operations:} \\ -0110110100 \lor 0011010110 = 0111110110 \\ \text{ ls } -1 \\ \\ drwxr-xr-x \dots \text{ Documents/} \\ -rw-rr-\dots \text{ file1} \\ \end{bmatrix}$	 One-time pad Alice and Bob privately share random n-bit vector K Eve does not know K Later, Alice has n-bit message m to send to Bob Alice computes C = m ⊕ K Alice sends C to Bob Bob computes m = C ⊕ K which is (m ⊕ K) ⊕ K Eve cannot figure out m from C unless she can guess K

arithmetic mod 7

- $a +_7 b = (a + b) \mod 7$
- $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

modular arithmetic

Let a and b be integers, and m be a positive integer. We say a *is congruent to b modulo m* if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \mod m$.

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

division theorem

Let *a* be an integer and *d* a positive integer. Then there are *unique* integers *q* and *r*, with $0 \le r < d$, such that a = dq + r.

 $q = a \operatorname{div} d$ $r = a \operatorname{mod} d$

integer representation

Signed integer representation Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99: 0110 0011, -18: 1001 0010

Two's complement representation Suppose $0 \le x < 2^{n-1}$, x is represented by the binary representation of x -x is represented by the binary representation of 2^{n} -x

99: 0110 0011, -18: 1110 1110

hashing

- Map values from a large domain, 0...M-1 in a much smaller domain, 0...n-1
- Index lookup
- Test for equality
- Hash(x) = x mod p
 - $-(or Hash(x) = (ax + b) \mod p)$
- Often want the hash function to depend on all of the bits of the data
 - Collision management

modular exponentiation

х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Arithmetic mod 7

fast exponentiation: repeated squaring

primality

An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization

gcd and factoring

euclid's algorithm • $GCD(x, y) = GCD(y, x \mod y)$ $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46.200$ $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$ int GCD(int a, int b){ $/* a \ge b, b \ge 0 */$ int tmp; int x = a; $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)}$ int y = b; while (y > 0){ • **11**min(1,0) • **13**min(0,1) tmp = x % y;x = y;y = tmp;return x; multiplicative inverse mod m induction proofs Suppose GCD(a, m) = 1P(0) $\forall k (P(k) \rightarrow P(k+1))$ $\therefore \forall n P(n)$ By Bézoit's Theorem, there exist integers s and t such that sa + tm = 1. 1. Prove P(0) 2.Let k be an arbitrary integer ≥ 0 3. Assume that P(k) is true s mod m is the multiplicative inverse of a: 4. ... 5. Prove P(k+1) is true $1 = (sa + tm) \mod m = sa \mod m$ $6.P(k) \rightarrow P(k+1)$ **Direct Proof Rule** 7. \forall k (P(k) \rightarrow P(k+1)) Intro \forall from 2-6 8. ∀ n P(n) Induction Rule 1&7

strong induction

cursive definitions of functions
• F(0) = 0; F(n + 1) = F(n) + 1;
• $G(0) = 1; G(n + 1) = 2 \times G(n);$
• 0! = 1; (n+1)! = (n+1) × n!
• $f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$
function definitions on recursively defined sets
Len(λ) = 0; Len(wx) = 1 + Len(w); for w $\in \Sigma^*$, x $\in \Sigma$
Concat(w, λ) = w for w $\in \Sigma^*$
Concat($W_1, W_2 X$) = Concat(W_1, W_2)x for W_1, W_2 in $\Sigma^*, x \in \Sigma$
_

rooted binary trees

context-free grammars	context-free grammars
• Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \lambda$	 Grammar for {0ⁿ1ⁿ : n≥ 0} all strings with same # of 0's and 1's with all 0's before 1's.
• Example: $S \rightarrow 0S \mid S1 \mid \lambda$	• Example: $S \rightarrow (S) \mid SS \mid \lambda$
nrecedence in simple arithmetic expressions	hnf grammar for c
• E – expression (start symbol) • T – term F – factor I – identifier N – number $E \rightarrow T \mid E+T$ $T \rightarrow F \mid F^{*}T$ $F \rightarrow (E) \mid I \mid N$ $I \rightarrow x \mid y \mid z$	<pre>statement: ((identifier "case" constant-expression "default") ":")* (expression? ";" block "if" "(" expression ")" statement "switch" "(" expression ")" statement "while" "(" expression ")" statement "while" "(" expression ")" statement "do" statement "while" "(" expression? ";" "for" "(" expression? ";" expression? ";" expression? ")" statement "goto" identifier ";" "continue" ";" "break" ";" "return" expression? ";" block: "/" declarationt statement "]"</pre>
$N \rightarrow 0 1 2 3 4 5 6 7 8 9$	<pre>block: "{" declaration* statement* "}" expression: assignment-expression% assignment-expression: (unary-expression ("=" "/=" "%=" "+=" "-=" "<<=" ">>=" "&=" "=" "/=" "%=" "+=" "-=" "<<=" ">>=" "&=" "=" "/=" "%=" "/=" "=" "<=" ">>=" "&=" "=" "/=" "%=" "/=" "=" "<<=" ">>=" "&=" "&=" "/=" "%=" "/=" "=" "<<=" ">>=" "&=" "&=" "/=" "%=" "/=" "<=" "<=" ">>=" "&=" </pre>

definitions for relations

Let A and B be sets, A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Let R be a relation on A

R is reflexive iff $(a,a) \in R$ for every $a \in A$

R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is transitive iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

relations

(a,b)∈ Parent: b is a parent of a
(a,b)∈ Sister: b is a sister of a
Aunt = Sister ° Parent
Grandparent = Parent ° Parent

 $R^2 = R \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R\}$

 $\begin{aligned} & \mathsf{R}^0 = \{(a,a) \ | \ a \in \mathsf{A}\} \\ & \mathsf{R}^1 = \mathsf{R} \\ & \mathsf{R}^{n+1} = \mathsf{R}^n \circ \mathsf{R} \end{aligned}$

$S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

combining relations

Let R be a relation from A to B Let S be a relation from B to C The composite of R and S, S $^{\circ}$ R is the relation from A to C defined

S ° R = {(a, c) | \exists b such that (a,b) \in R and (b,c) \in S}

n-ary relations

Let $A_1, A_2, ..., A_n$ be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$.

Student_ID	Name	GPA	Student_ID	Major
328012098	Knuth	4.00	328012098	CS
481080220	Von Neuman	3.78	481080220	CS
238082388	Russell	3.85	481080220	Mathematics
238001920	Einstein	2.11	238082388	Philosophy
1727017	Newton	3.61	238001920	Physics
348882811	Karp	3.98	1727017	Mathematics
2921938	Bernoulli	3.21	348882811	CS
2921939	Bernoulli	3.54	1727017	Physics
			2921938	Mathematics
			2921939	Mathematics

matrix representation for relations

Relation R on $A = \{a_1, \dots, a_p\}$

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, a_j) \in R, \\ 0 \text{ if } (a_i, a_j) \notin R. \end{cases}$$

 $\{(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,1),\,\,(2,3),\,(3,2),\,(3,\,3)\,\,(4,2)\,\,(4,3)\}$

paths in relations

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

(a,b) is in the transitive-reflexive closure of R if and only if there is a path from a to b. (Note: by definition, there is a path of length 0 from a to a.)

representation of relations

Directed Graph Representation (Digraph)

 $\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) \}$

finite state machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is¹the set of strings that reach a final state

State	0	1
s ₀	s ₀	S_1
S_1	s ₀	S ₂
s ₂	s ₀	S ₃
s ₃	s ₃	s ₃

accept strings with a 1 three positions from the end

product construction

Combining FSMs to check two properties at once

New states record states of both FSMs

state machines with output

	Inp	Output	
State	L	R	
s ₁	S_1	S ₂	Веер
s ₂	S ₁	s ₃	
s ₃	s ₂	S ₄	
S ₄	S ₃	s ₄	Веер

"Tug-of-war"

vending machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

vending machine, final version

state minimization

Finite State Machines with output at states

another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

nondeterministic finite automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 - Also can have edges labeled by empty string λ
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

nondeterministic finite automaton

Accepts strings with a 1 three positions from the end of the string

building a NFA from a regular expression

NFA to DFA: subset construction

NFA

binary palindromes B cannot be recognized by any DFA

cardinality

the real numbers are not countable

"diagonalization"

_		1	2	3	4	5	6	7	8	9	
$r_1^{D=}$	0. ^{0.}	5 ¹	0	0	0	0	0	0	0		
r ₂	0.	3	3 ⁵	3	3	3	3	3	3		
r ₃	0.	1	4	2 ⁵	8	5	7	1	4		
r ₄	0.	1	4	1	5 ¹	9	2	6	5		
r ₅	0.	1	2	1	2	2 ⁵	1	2	2		
r ₆	0.	2	5	0	0	0	0 ⁵	0	0		
r ₇	0.	7	1	8	2	8	1	8 ⁵	2		
r ₈	0.	6	1	8	0	3	3	9	4 ⁵		
										•••	

general models of computation

Control structures with infinite storage Many models Turing machines Functional Recursion Java programs

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

what is a turing machine?

universal turing machine

- The Universal Turing Machine U
 - Takes as input: (<P>,x) where <P> is the code
 - of a program and **x** is an input string
 - Simulates P on input x
- Same as a Program Interpreter

halting problem

- Given: the code of a program P and an input
 - **x** for **P**, i.e. given $(\langle P \rangle, x)$
- Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem "The halting problem is undecidable"

suppose H(<P>,x) solves the halting problem

Does **D** halt on input **<D>**?

- **D** halts on input **<D>**
- \Leftrightarrow H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so H(<D>,x) outputs 1 iff D halts on input x]

 \Leftrightarrow **D** runs forever on input <**D**>

[since **D** goes into an infinite loop on **x** iff H(x,x)=1]

program equivalence

Input: the codes of two programs, <P> and <Q> Output: 1 if P produces the same output as Q does on every input 0 otherwise

The equivalent program problem is undecidable

Teaching evaluation

 Please answer the questions on both sides of the form. This includes the ABET questions on the back