CSE 311.: Foundations of Computing

Fall 2013
Lecture 25: Non-regularity and limits of FSMs

\ S41) THeRED BE
IRREGULARITIES

LELL, [HERE'S ONE:

highlights

NFAs from Regular Expressions

(01 U1)*0

highlights

“Subset construction”: NFA to DFA

1 in third position from end

0,1

1
{A, B, C} o /o
oV / ~ oo
G{A} ——> {A, B} 1 j1
’ m 8,0} o
\ {AI C} /

redrawing

DFAs = regular expressions

We have shown how to build an optimal DFA for
every regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Theorem: A language is recognized by a DFA if and
only if it has a regular expression

generalized NFAs

starting from an NFA

* Like NFAs but allow
— Parallel edges
— Regular Expressions as edge labels
NFAs already have edges labeled A or a

* An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

* A string x is accepted iff there is a path from start
to final state labeled by a regular expression
whose language contains x

Add new start state and final state

L
~0—2+-0 >~O
—

Then eliminate original states one by one,
keeping the same language, until it looks
like:

+0 A -0

Final regular expression will be A

only two simplification rules

* Rule 1: For any two states q, and q, with parallel
edges (possibly q,=q,), replace

@, proe

* Rule 2: Eliminate non-start/final state q; by
replacing all

. A ‘ C . by . AB*C .

for every pair of states q,, q, (even if q,=q,)

converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits
mod 3 sum of the digits is O

splicing out a node

Label edges with regular expressions

te>t >ty 10*2
to>t >t 0 10*1
t,>t,>t,: 20%2
t,>t,>t,: 20*1

finite automaton without t,

R;: 0U10%2
R, 2U10%1
Ry 1U20%2
R, 0U20%1

Rs: R, UR,R,*R, "CS:K‘
R

A
CO—Q0
Final regular expression:

(0 U 10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20%2))*

what can finite state machines do?

* We've seen how we can get DFAs to recognize all
regular languages

* What about some other languages we can
generate with CFGs?

—{0™"1":n>0}?
— binary palindromes?
— strings of balanced parentheses?

A={0"1" : n = 0} cannot be recognized by any DFA

Consider the infinite set of strings
S={A, 0, 00, 000, 0000, ...}

Claim: No two strings in S can end at the same state
of any DFA for A
Proof:

Suppose h+m and 0" and O™ end at the same state p of some DFA for A.
Since 0"1" is in A, following 1" after state p must lead to a final state.

But then the DFA would also accept 0m1n
which is a contradiction to the DFA recognizing A.

Given claim, the # of states of any DFA for A must be 2 |S|
which is not finite, which is impossible for a DFA.

B = {binary palindromes} can’t be recognized by any DFA

Consider the infinite set of strings
S=({\, 0, 00, 000, 0000, ...}={0": n > 0}

Claim: No two strings in S can end at the same
state of any DFA for B

Proof:

Suppose n=m and 0" and O™ end at the same state p of some DFA for B.

Since 0"10" is in B, following 10" after state p must lead to
a final state.

But then the DFA would also accept 0™10" which is not in B
and is a contradiction since the DFA recognizes B.

Given claim, the # of states of any DFA for B must be 2 |S|
which is not finite, which is impossible for a DFA.

general: how to show language L has no DFA

* Find a “hard” infinite set S={s,,s,,...,S,;...} of
strings that might be prefixes of strings in L

* Show that S is hard by showing that no two
strings s, #s,,, in S can end at the same state of
any DFA recognizing L

— For each pair s #s,, find an extender string t

depending on n,m so that exactly one of s, t and st
isinL

* Conclude that any DFA for L would need 2
| S | states which is not finite, and so impossible

P = {strings of balanced parentheses}

pattern matching

* Given
— a string, s, of n characters
— a pattern, p, of m characters
— usually m<<n
* Find
— all occurrences of the pattern p in the string s

* Obvious algorithm:
— try to see if p matches at each of the positions in s
stop at a failed match and try the next position

18

StiNg S =XYyXXYXYXYYXYyXYyXYyyXyXyXX
pattern p=XyXyyXxyXxyXxXx

19

StiNg S =Xy XXYXYXYYXYXYXYYyXyXyXX
XYXYYXYXYXX

20

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
XYXYYXYXYXX

21

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

XYXYYXYXYXX

22

StiNg S =XYXXYXYyXYYXYyXYXYYyXyXyXX
XyXy
X

Xy
XYXYYXYXYXX

23

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

24

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

Xy
XYyxXyy
X

XYXYYXYXYyXX

25

StiNg S =XYXXYXYyXYYXYXYXYYyXyXyXX
XyXxy
X

Xy
XYyxXyy
X

XYXYYXYXYyXX
XYXYYXYXYXX

26

String s =Xy XXYyXYyXYYXYyXyXyyXyXyXxXx
XyXy
X

Xy
XyXxyy
X
XYXYYXYXYXX
X

XYXYYXYXYXX

27

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

Xy
XyxXyy
X

XYXYYXYXYXX
X

Xy X
XYXYYXYXYXX

28

StriNg S =Xy XXYXYXYYyXYyXYyXYyyXyXyXX

XYy Xy
X
Xy
XyXxyy
X
XYXYYXYXYXX
X
Xy X
X
XYXYYXYXYyXX

29

StriNg S =XYXXYXYXYYyXYyXyXyyXyXyXX

XyXy
X
Xy
XyXxyy
X
XYXYYXYXYXX
X
Xy X
X
X
XYXYYXYXYXX

30

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX

XyXxy
X
Xy
XyXyy
X
XYXYYyXYyXYyXX
X
Xy X
X
X
XyXyy
XYXYYXYyXyXX

31

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX

XyXxy
X
Xy
Xyxyy
X
XYXYYXYyXYXX
Worst-case time X VX
O(mn) X
X
Xyxyy
X

XYXYYXYXYXX

32

String S =Xy XXYXYXYYXYyXyXyyXyXyXXx
XyXxy

@ Lots of wasted work
‘&

XYXYYXYXYXX

(

XYXYYXYXYXX

better pattern matching via finite automata

* Build a DFA for the pattern (preprocessing) of size
O(m)
— Keep track of the ‘longest match currently active’
— The DFA will have only m+1 states

* Run the DFA on the string n steps

* Obvious construction method for DFA will be O(m?2)
but can be done in O(m) time.

* Total O(m+n) time

34

building a DFA for the pattern

pattern p=xy xy y Xy xy x x

—).-x—»-L»-x—»AL»AL»-x—»AL»—x—»—b.—x—»—x—)@

35

preprocessing the pattern

pattern p=xy xy y Xy xy x x

y

36

preprocessing the pattern

pattern p=xy xy y Xy xy x x

37

preprocessing the pattern

pattern p=xy xy y Xy Xy x x

38

preprocessing the pattern

pattern p=xy xy y Xy xy x x

39

generalizing

* Can search for arbitrary combinations of patterns
— Not just a single pattern
— Build NFA for pattern then convert to DFA ‘on the fly'.

Compare DFA constructed above with subset
construction for the obvious NFA.

40

