CSE 311: Foundations of Computing

Fall 2013

Lecture 25: Non-regularity and limits of FSMs

highlights

NFAs from Regular Expressions

(01 ∪1)*0

highlights

"Subset construction": NFA to DFA

1 in third position from end

NFA

redrawing

DFAs ≡ regular expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA if and only if it has a regular expression

generalized NFAs

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels NFAs already have edges labeled λ or a
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A

only two simplification rules

• Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

• Rule 2: Eliminate non-start/final state q_3 by replacing all

$$(q_1)$$
 $\xrightarrow{\mathbf{B}}$ (q_3) $\xrightarrow{\mathbf{C}}$ (q_2) by (q_1) $\xrightarrow{\mathbf{AB*C}}$ (q_2)

for every pair of states q_1 , q_2 (even if $q_1=q_2$)

converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

splicing out a node

Label edges with regular expressions

finite automaton without t_1

Final regular expression: $(0 \cup 10^{*}2 \cup (2 \cup 10^{*}1)(0 \cup 20^{*}1)^{*}(1 \cup 20^{*}2))^{*}$

what can finite state machines do?

- We've seen how we can get DFAs to recognize all regular languages
- What about some other languages we can generate with CFGs?
 - $\{ 0^n 1^n : n \ge 0 \}?$
 - binary palindromes?
 - strings of balanced parentheses?

A={ $0^n 1^n : n \ge 0$ } cannot be recognized by any DFA

Consider the infinite set of strings $S{=}\{\lambda,\,0,\,00,\,000,\,0000,\,...\}$

Claim: No two strings in S can end at the same state of any DFA for A

Proof:

Suppose $n \neq m$ and 0^n and 0^m end at the same state p of some DFA for A. Since $0^n 1^n$ is in A, following 1^n after state p must lead to a final state.

But then the DFA would also accept 0^m1ⁿ which is a contradiction to the DFA recognizing A.

Given claim, the # of states of any DFA for A must be \geq |S| which is not finite, which is impossible for a DFA.

B = {binary palindromes} can't be recognized by any DFA

Consider the infinite set of strings
$$\label{eq:sets} \begin{split} \textbf{S}{=}\{\lambda,\,\textbf{0},\,\textbf{00},\,\textbf{000},\,\textbf{0000},\,...\}{=}\{\textbf{0}^n:n\geq0\} \end{split}$$

Claim: No two strings in S can end at the same state of any DFA for B

Proof:

Suppose $n \neq m$ and 0^n and 0^m end at the same state p of some DFA for B. Since $0^n 10^n$ is in B, following 10^n after state p must lead to a final state.

But then the DFA would also accept 0^m10ⁿ which is not in B and is a contradiction since the DFA recognizes B.

Given claim, the # of states of any DFA for B must be \geq |S| which is not finite, which is impossible for a DFA.

general: how to show language L has no DFA

- Find a "hard" infinite set S={s₀,s₁,...,s_n,...} of strings that might be prefixes of strings in L
- Show that S is hard by showing that no two strings s_n≠s_m in S can end at the same state of any DFA recognizing L
 - For each pair $s_n \neq s_m$ find an extender string t depending on n,m so that exactly one of $s_n t$ and $s_m t$ is in L
- Conclude that any DFA for L would need ≥ |S|states which is not finite, and so impossible

en string, s , of n characters pattern, p , of m characters sually m << n d II occurrences of the pattern p in the string s
ous algorithm: ry to see if p matches at each of the positions in s stop at a failed match and try the next position 18
= x y x x y x y x y y x y x y x y x y x

string s = x y x x y x y x y x y x y x y x y x y x y	string s = x y x x y x y x y x y x y x y x y x y x y x y
21	22
string s = x y x x y x y x y x y x y x y x y x y	string s = x y x x y x y x y x y x y x y x y x y x y x y x
23	24

<pre>string s = x y x x y x y x y x y x y x y x y x y</pre>	<pre>string s = x y x x y x y x y x y x y x y x y x y</pre>
25	26
String s = x y x x y x y x y x y x y x y x y x y	string s = x y x x y x y x y x y x y x y x y x y
27	28

preprocessing the pattern

pattern **p**=x y x y y x y x y x x

preprocessing the pattern

pattern **p**=x y x y y x y x y x x

preprocessing the pattern

pattern **p**=x y x y y x y x y x x

generalizing

- Can search for arbitrary combinations of patterns
 - Not just a single pattern
 - Build NFA for pattern then convert to DFA 'on the fly'.
 Compare DFA constructed above with subset construction for the obvious NFA.

37

38