CSE 311: Foundations of Computing I Assignment #7 November 13, 2013 **Due: November 20, 2013**

Problems

- Construct context-free grammars that generate the following sets of strings. For each of your constructions, write a sentence or two to explain why your construction is correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.
 - a. The set of all binary strings that contain at least two 0's and at most two 1's.
 - b. The set of all binary strings that are of odd length and have 1 as their middle character.
- 2. If $a \in \Sigma$ is a symbol then the string a^n for $n \ge 0$ is the string consisting of n copies of a, one after the other. Construct context-free grammars that generate the following sets of strings. For each of your constructions, write a sentence or two to explain why it's correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.
 - a. $\{1^m 0^n 1^{m+n} : m, n \ge 0\}$
 - b. $\{1^m 0^n 1^p : m, n, p \ge 0 \text{ and } m \ge n \text{ or } n \le p\}.$
- 3. Define a grammar by $S \rightarrow SS \mid 0S11 \mid 110S \mid \lambda$. Use structural induction to prove that every string generated by S has twice as many 1's as 0's.
- 4. A relation R is called *circular* if $(c, a) \in R$ whenever $(a, b) \in R$ and $(b, c) \in R$. Prove that any reflexive relation R is circular if and only if it is both symmetric and transitive.
- 5. Let *R* be the relation on pairs of positive real numbers $\mathbb{R}^+ \times \mathbb{R}^+$ given by $((x, y), (u, v)) \in R$ if and only if xv = uy. Prove that *R* is reflexive, symmetric, and transitive.

- 6. A directed graph is called *acyclic* if it does not contain a directed cycle (a non-empty directed path from a vertex to itself). Show that for every directed acyclic graph *G*, the transitive-reflexive closure of the relation *R* represented by *G* is antisymmetric.
- 7. Is the transitive-reflexive closure of a relation R always equal to the transitive-reflexive closure of R^3 ? Justify your answer.

Extra credit:

Consider the following context-free grammar.

$\langle Stmt \rangle \rightarrow$	<pre>〈Assign〉 〈IfThen〉 〈IfThenElse〉 〈BeginEnd〉</pre>
\langle If Then $\rangle \rightarrow$	if condition then (Stmt)
⟨IfThenElse⟩ →	if condition then (Stmt) else (Stmt)
$\langle BeginEnd \rangle \rightarrow$	begin (StmtList) end
$\langle StmtList \rangle \rightarrow$	〈StmtList〉 〈Stmt〉 〈Stmt〉
$\langle Assign \rangle \rightarrow$	a := 1

This is a natural-looking grammar for part of a programming language, but unfortunately the grammar is "ambiguous" in the sense that it can be parsed in different ways (that have different meanings).

- a. Show an example of a string in the language that has two different parse trees.
- b. Give a new grammar for the same language that is **unambiguous** in the sense that every string has a unique parse tree.