CSE311 Quiz Section: April 19, 2012

- 1. (13, Section 4.1, 7th edition) Assume a, b are integers, $a \equiv 4 \pmod{13}$ and $b \equiv 9 \pmod{13}$. Find integer $0 \le c \le 12$ such that:
 - (a) $c \equiv 9a \pmod{13}$
 - (b) $c \equiv 11b \pmod{13}$
 - (c) $c \equiv a + b \pmod{13}$
 - (d) $c \equiv 2a + 3b \pmod{13}$
 - (e) $c \equiv a^2 + b^2 \pmod{13}$
 - (f) $c \equiv a^3 b^3 \pmod{13}$
- 2. (24, Section 4.1, 7th edition) Find integer a such that:
 - (a) $a \equiv 43 \pmod{27}$, $-22 \le a \le 0$
 - (b) $a \equiv 17 \pmod{31}, -14 \le a \le 14$
 - (c) $a \equiv -11 \pmod{21}$, $90 \le a \le 110$
- 3. (35, Section 4.1, 7th edition) Show that if n|m, where n, m integers greater than 1, and if $a \equiv b \pmod{m}$, where a, b integers then:

 $a \equiv b \pmod{n}$

4. (37(a), Section 4.1, 7th edition) Find a counterexample to the following:

If $ac \equiv bc \pmod{m}$ then $a \equiv b \pmod{m}$. Note that a, b, c, m are all integers and $m \geq 2$.

5. For home: Solve 27, Section 4.1, 7th edition