
CSE311: Worksheet, May 17, 2012

1. Take a look at the url indicated in the worksheet

2. The problem is in the inductive step. Notice that if I choose n to be
equal to 2, then the inductive step says that gcd(f(3), f(2)) reduces to
gcd(f(2), f(1)) in one step. Notice that f(3) = 2 and f(2) = 1. By
applying one step of Euclid’s algorithm on gcd(2, 1) we get gcd(1, 0) =
gcd(f(0), f(1)) and not gcd(f(2), f(1)).

3. We will apply strong induction. Consider the single vertex tree. It satisfies
the statement, since it has one leaf and no internal nodes. Now assume
that the statement holds for all trees with up to k leaves (hypothesis). We
will prove that it also holds for trees with k + 1 leaves. Let T be such a
tree. Then it must be the result of the application of the recurrence on
two smaller trees T1, T2. Let l1, l2 denote the number of leaves of T1, T2.
We have that l1 ≥ 1, l2 ≥ 1 and l1 + l2 = k + 1. From this we get that
l1, l2 ≤ k. Therefore we can apply the hypothesis and deduce the fact
that the two trees have l1 − 1 and l2 − 1 internal nodes respectively. By
conjoining T1, T2 via a common root we add just one internal node. The
total number of internal nodes is l1−1+l2−1+1 = (l1+l2)−1 = (k+1)−1.
Therefore the statement holds.

4. The problem here is the constant term at the rhs of the equation. If we
try to apply standard induction techniques to approach this, we will soon
find ourselves in a dead-end (I invite you to try it). We will solve this by
actually proving a stronger statement:
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Now assume that the statement holds for n = k (hypothesis):
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We will prove that:
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By the hypothesis:
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Now all that is left is to prove that:
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which by transitivity of inequality, concludes the proof.
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which holds.
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