CSE 311 Foundations of
Computing |

Lecture 30

Computability: Other Undecidable
Problems

Autumn 2012

Autumn 2012 CSE 311

Announcements

Reading

— 7th edition: p. 201 and 13.5
— 6th edition: p. 177 and 12.5
— 5th edition: p. 222 and 11.5

Topic list and sample final exam problems have been posted
Comprehensive final, roughly 67% of material post midterm

Review session, Saturday, December 8, 10 am — noon, EEB
125

Final exam, Monday, December 10
— 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.

Last lecture highlights

Turing machine = Finite control + Recording Medium + Focus of attention

Finite Control:

Recording Medium

program P 4 input x
] 0 . | frfrlofr 1| _|_
S1 (1153) (1152) (0152) ‘
1 111
s, | (Hs) | Rs) | (Rs) == 19110 - |-
S3 (HIS3) (R)S3) (RIS3)

Autumn 2012

CSE 311

Last lecture highlights

* The Universal Turing Machine U

— Takes as input: (<P>,x) where <P> is the code of a
program and x is an input string

— Simulates P on input x

* Same as a Program Interpreter

iInput output X — output

x—|P [—P(x) <ps— 0| P(x)

Autumn 2012 CSE 311

Last lecture highlights

Program P @ input x
~ 0 1 o frjrjofaj1|_|_
S (1,s5) (1,s,) (0,s,)
S, (H,ss) (R,s;) (R,s;)
S3 (H,ss) (R,s3) (R,s3)
Universal TM U @ Program code <P> input x
ol (])]s 3 (11, |s{3D|(]2f.... |1]1|0
51
S) output
([1],]s]3])|(|1 0/ 0|1

Autumn 2012

CSE 311

Programs about Program
Properties

* The Universal TM takes a program code <P> as
input, and an input x, and interprets P on x

— Step by step by step by step...

 Can we write a TM that takes a program code
<P> as input and checks some property of the
program?
— Does P ever return the output “ERROR”?

— Does P always return the output “ERROR”?
— Does P halt on input x?

Halting Problem

* Given: the code of a program P and an input x
for P, i.e. given (<P>,x)

e Qutput: 1if P halts on input x
0 if P does not halt on input x

Theorem (Turing): There is no program that
solves the halting problem
“The halting problem is undecidable”

Autumn 2012 CSE 311

Proof by contradiction

e Suppose that H is a Turing machine that solves
the Halting problem

Function D(x):
 if H(x,x)=1 then
— while (true); /* loop forever */

* else
— no-op; /* do nothing and halt */

e endif

* What does D do on input <D>?
— Does it halt?

Autumn 2012 CSE 311 8

‘Does D halt on input <D>? | |Function D(x):
e if H(x,x)=1 then
— while (true); /* loop forever */

* else
— no-op; /* do nothing and halt */

D halts on input <D> +_endjf

< H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so
H(<D>,x) outputs 1 iff D halts on input X]

< D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

Autumn 2012 CSE 311 9

That's it!

* We proved that there is no computer program
that can solve the Halting Problem.

* This tells us that there is no compiler that can

check our programs and guarantee to find any
infinite loops they might have

10

SCOOPING THE LOOP SNOOPER
A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

No general procedure for bug checks succeeds.

Now, | won’t just assert that, I'll show where it leads:

| will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later

(in finite compute time) correctly infers
whether infinite looping behavior occurs...

SCOOPING THE LOOP SNOOPER

Here’s the trick that I'll use -- and it’s simple to do.
I’ll define a procedure, which | will call Q,

that will use P’s predictions of halting success

to stir up a terrible logical mess.

And this program called Q wouldn’t stay on the shelf;

| would ask it to forecast its run on jtself.

When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

Full poem at:
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

<P>—

Autumn 2012

Halting Problem

_1if P(x) halts
0 if P(x) does not halt

CSE 311

13

The “Always Halting” problem

* Given: <Q>, the code of a program Q

* Qutput: 1if Q halts on every input
0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:

— Show we could solve the Halting Problem if we had a
solution for the “always halts” problem.

— No program solving for Halting Problem exists => no
program solving the “always halts” problem exists

Autumn 2012 CSE 311

14

The “Always Halting” problem

X—>

<P>—

_1if P(x) halts

0 if P(x) does not halt @

Suppose we had a TM A for the Always Halting problem

x E—
<P>—

Autumn 2012

Program Q(x’)
... Ignore X’
...run P on x

<Q>—

CSE 311

A

1 if P(x) halts

0 if P(x) does
not halt

15

The “Always ERROR” problem

* Given: <R>, the code of a program R

* Qutput: 1if R always prints ERROR
0 if R does not always print ERROR

Autumn 2012 CSE 311

16

The “Always ERROR” problem

A ___1if Q always halts
<Q> 0 if Q does not always halt

Suppose we had a TM E for the ERROR problem

Program R(x) 1 if Q always
<Q>—Run Qon x <R>—E — halts

Print “ERROR” 0 if Q does not

Halt always halt

Autumn 2012 CSE 311 17

Pitfalls

* Not every problem on programs is undecidable!
Which of these is decidable?

* Input <P>and x
Output: 1 if P prints “ERROR” on x
after less than 100 steps
0 otherwise

* Input <P>and x
Output: 1 if P prints “ERROR” on x
after more than 100 steps
0 otherwise

