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Announcements 

• Reading 
– 7th edition: p. 201 and 13.5  
– 6th edition: p. 177 and 12.5 
– 5th edition: p. 222 and 11.5 

• Topic list and sample final exam problems have been 
posted 

• Comprehensive final, roughly 67% of material post 
midterm 

• Review session, Saturday, December 8, 10 am – noon, 
EEB 125 

• Final exam,  Monday, December 10 
– 2:30-4:20 pm or 4:30-6:20 pm,  Kane 220. 
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Last lecture highlights 
• Cardinality 

• A set S is countable iff we can write it as               
S={s1, s2, s3, ...} indexed by ℕ 

• Set of rationals is countable 

– “dovetailing” 

 

 

• Σ* is countable 

– {0,1}* = {0,1,00,01,10,11,000,001,010,011,100,101,...} 
 

• Set of all (Java) programs is countable 

Autumn 2012 CSE 311 3 

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... 

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ... 

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ... 

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ... 

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ... 

6/1 6/2 6/3 6/4 6/5 6/6 ... 

7/1 7/2 7/3 7/4 7/5 .... 

... ... ... ... ... 

Last lecture highlights 
• The set of real numbers is not countable 

– “diagonalization” 

 

 

 

 

 

 

– Why doesn’t this show that the rationals aren’t 
countable? 
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Last lecture highlights 

• There exist functions that cannot be 
computed by any program 

– The set of all functions  f : ℕ→{0,1,...,9} 
is not countable 

– The set of all (Java/C/C++) programs is countable 

– So there are simply more functions than programs 
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Do we care? 

• Are any of these functions, ones that we 
would actually want to compute? 

– The argument does not even give any example of 
something that can’t be done, it just says that 
such an example exists 

• We haven’t used much of anything about 
what computers (programs or people) can do 

– Once we figure that out, we’ll be able to show 
that some of these functions are really important 
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Turing Machines 

Church-Turing Thesis 

Any reasonable model of computation that includes 
all possible algorithms is equivalent in power to a 
Turing machine 

 

• Evidence 

– Intuitive justification 

– Huge numbers of equivalent models to TM’s 
based on radically different ideas 
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 Components of Turing’s Intuitive  
Model of Computers 

• Finite Control 
– Brain/CPU  that has only a finite # of possible “states of 

mind” 

• Recording medium 
– An unlimited supply of blank “scratch paper” on which to 

write & read symbols, each chosen from a finite set of 
possibilities 

– Input also supplied on the scratch paper 

• Focus of attention 
– Finite control can only focus on a small portion of the 

recording medium at once 
– Focus of attention can only shift a small amount at a time 
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What is a Turing Machine? 
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What is a Turing Machine? 

• Recording Medium 
– An infinite read/write “tape” marked off into cells 
– Each cell can store one symbol or be “blank” 
– Tape is initially all blank except a few cells of the tape containing 

the input string 
– Read/write head can scan one cell of the tape - starts on input 

• In each step, a Turing Machine 
– Reads the currently scanned symbol 
– Based on state of mind and scanned symbol 

• Overwrites symbol in scanned cell 
• Moves read/write head left or right one cell 
• Changes to a new state 

• Each Turing Machine is specified by its finite set of rules 
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Sample Turing Machine 

_ _ 1 1 0 1 1 _ _ 
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_ 0 1 

s1 (1,s3) (1,s2) (0,s2) 

s2 (H,s3) (R,s1) (R,s1) 

s3 (H,s3) (R,s3) (R,s3) 

What is a Turing Machine? 
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Turing Machine ≡ Ideal Java/C Program 

• Ideal C/C++/Java programs 
– Just like the C/C++/Java you’re used to 

programming with, except you never run out of 
memory 
• constructor methods always succeed 

• malloc never fails 

• Equivalent to Turing machines except a lot 
easier to program ! 
– Turing machine definition is useful for breaking 

computation down into simplest steps 

– We only care about high level so we use programs 
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Turing’s idea: Machines as data 

• Original Turing machine definition 
– A different “machine” M for each task 

– Each machine M is defined by a finite set of 
possible operations on finite set of symbols 

• M has a finite description as a sequence of 
symbols, its “code” 

• You already are used to this idea:  
– We’ll write <P> for the code of program P 

– i.e. <P> is the program text as a sequence of ASCII 
symbols and P is what actually executes 
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Turing’s Idea: A Universal Turing 
Machine 

• A Turing machine interpreter  U 
– On input <P> and its input x, U outputs the same thing as P 

does on input x 

– At each step it decodes which operation P would have 
performed and simulates it. 

• One Turing machine is enough 

– Basis for modern stored-program computer 

• Von Neumann studied Turing’s UTM design 

P 

input 
x 

output 

P(x) U 

x output 

P(x) 
P 
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Halting Problem 

• Given: the code of a program P and an input x  
        for P, i.e. given (<P>,x) 

• Output: 1 if P halts on input x                            
          0 if P does not halt on input x 

 

Theorem (Turing):  There is no program that 
solves the halting problem                                   
“The halting problem is undecidable” 
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Proof by contradiction 

• Suppose that H is a Turing machine that solves 
the Halting problem 
 Function D(x): 

• if H(x,x)=1 then 
– while (true); /* loop forever */ 

• else 
– no-op; /* do nothing and halt */ 

• endif 

 

• What does D do on input <D>? 
– Does it halt? 
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D halts on input <D> 

⇔ H outputs 1 on input (<D>,<D>)  

        [since H solves the halting problem and so       
     H(<D>,x) outputs 1 iff D halts on input x] 

⇔ D runs forever on input <D> 

        [since D goes into an infinite loop on x iff H(x,x)=1] 
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   Function D(x): 
• if H(x,x)=1 then 

– while (true); /* loop forever */ 

• else 

– no-op; /* do nothing and halt */ 

• endif 

Does D halt on input <D>? 
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That’s it! 

• We proved that there is no computer program 
that can solve the Halting Problem. 
 

• This tells us that there is no compiler that can 
check our programs and guarantee to find any 
infinite loops they might have 
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