CSE 311 Foundations of

 Computing ILecture 28
Cardinality, Countability \& Computability
Autumn 2012

Autumn 2012
CSE 311

Announcements

- Reading this week
- 7th edition: 2.5 (Cardinality) + p. 201 and 13.5
- 6th edition: pp. 158-160 (Cardinality)+ p 177 and 12.5
- 5th edition: Pages 233-236 (Cardinality), p. ? and 11.5
- Homework 10 due Friday
- Topic list and sample final exam problems have been posted
- Comprehensive final, roughly 67\% of material post midterm
- Review session, Saturday, December 8, 10 am - noon (tentatively)
- Final exam, Monday, December 10
- 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.
- If you have a conflict, contact instructors ASAP

Last lecture highlights

- Languages that cannot be recognized by any DFA
$-\left\{0^{n} 1^{n}: n \geq 0\right\}$
- Palindromes
- Linear time algorithm for pattern recognition using a Finite Automaton

Computing \& Mathematics

Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning

A Brief History of Reasoning

- 1670 's-1800's Calculus \& infinite series
- Suddenly infinite stuff really matters
- Reasoning about infinite still a problem
- Tendency for buggy or hazy proofs
- Mid-late 1800's
- Formal mathematical logic
- Boole Boolean Algebra
- Theory of infinite sets and cardinality
- Cantor
"There are more real \#'s than rational \#'s"

A Brief History of Reasoning

- 1900
-Hilbert's famous speech outlines goal: mechanize all of mathematics 23 problems
- 1930's
-Gödel, Turing show that Hilbert's program is impossible.
- Gödel's Incompleteness Theorem
- Undecidability of the Halting Problem

Both use ideas from Cantor's proof about reals \& rationals

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

- Evidence
- Huge numbers of equivalent models to TM's based on radically different ideas

CSE 311 9

Cardinality

Def: Two sets A and B are the same size (same cardinality) iff there is a 1-1 and onto function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
(a) (a)

Also applies to infinite sets

A Brief History of Reasoning

- 1930’s
- How can we formalize what algorithms are possible?
- Turing machines (Turing, Post)
- basis of modern computers
- Lambda Calculus (Church)
- basis for functional programming
equivalent!
- μ-recursive functions (Kleene)
- alternative functional programming basis

Autumn 2012
CSE 311

Starting with Cantor

- How big is a set?
- If S is finite, we already defined $|S|$ to be the number of elements in S .
- What if S is infinite? Are all of these sets the same size?
- Natural numbers \mathbb{N}
- Even natural numbers
- Integers \mathbb{Z}
- Rational numbers \mathbb{Q}
- Real numbers \mathbb{R}

Cardinality

- The natural numbers and even natural numbers have the same cardinality:
$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots\end{array}$
$\begin{array}{llllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & \ldots\end{array}$
n is matched with 2 n

Countability

Definition: A set is countable iff it is the same size as some subset of the natural numbers

Equivalent: A set S is countable iff there is an onto function $\mathrm{g}: \mathbb{N} \rightarrow \mathrm{S}$

Equivalent: A set S is countable iff we can write $S=\left\{s_{1}, S_{2}, s_{3}, \ldots\right\}$

Is the set of positive rational numbers countable?

- We can't do the same thing we did for the integers
- Between any two rational numbers there are an infinite number of others

Positive Rational Numbers
$\begin{array}{llllllll}1 / 1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8\end{array}$ $\begin{array}{lllllllllll}2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6 & 2 / 7 & & \end{array}$ $\begin{array}{llllllllllll}3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 3 / 5 & 3 / 6 & 3 / 7 & 3 / 8 & \ldots\end{array}$ $\begin{array}{lllllllllll} & 4 / 1 & 4 / 2 & 4 / 3 & 4 / 4 & 4 / 5 & 4 / 6 & 4 / 7 & & \text {... }\end{array}$ $\begin{array}{lllllllll}5 / 1 & 5 / 2 & 5 / 3 & 5 / 4 & 5 / 5 & 5 / 6 & 5 / 7 & . .\end{array}$

6/1 6/2 6/3 6/4 6/5 6/6
7/1 7/2 7/3 7/4 7/5

Autumn 2012
CSE 311
\{Positive Rational Numbers\} is Countable
\{Positive Rational Numbers\} is Countable

$$
\mathbb{Q}^{+}=\{1 / 1,2 / 1,1 / 2,3 / 1,2 / 2,1 / 3,4 / 1,2 / 3,3 / 2,1 / 4,
$$ 5/1,4/2,3/3,2/4,1/5, ...\}

List elements in order of

- numerator+denominator
- breaking ties according to denominator
- Only k numbers when the total is k

Technique is called "dovetailing"

- 2012

CSE 311

Claim: Σ^{*} is countable for every finite Σ

Autumn 2012
CSE 311

What about the Real Numbers?

Q: Is every set is countable?

A: Theorem [Cantor] The set of real numbers (even just between 0 and 1) is NOT countable

Proof is by contradiction using a new method called "diagonalization"

Real numbers between 0 and $1: \mathbb{R}^{[0,1)}$

- Every number between 0 and 1 has an infinite decimal expansion:
$1 / 2=0.50000000000000000000000 \ldots$
$1 / 3=0.3333333333333333333333 \ldots$
$1 / 7=0.14285714285714285714285 \ldots$
$\pi-3=0.14159265358979323846264 . .$.
$1 / 5=0.19999999999999999999999 \ldots$
$=0.20000000000000000000000 \ldots$
Autumn 2012
CSE 311

The set of all Java programs is countable

Autumn 2012

Proof by contradiction

- Suppose that $\mathbb{R}^{[0,1)}$ is countable
- Then there is some listing of all elements

$$
\mathbb{R}^{[0,1)}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, \ldots\right\}
$$

- We will prove that in such a listing there must be at least one missing element which contradicts statement " $\mathbb{R}^{[0,1)}$ is countable"
- The missing element will be found by looking at the decimal expansions of $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$

Autumn 2012
CSE 311

Representations as decimals

Representation is unique except for the cases that decimal ends in all 0's or all 9's.

$$
\begin{aligned}
x & =0.19999999999999999999999 \ldots \\
10 x & =1.9999999999999999999999 \ldots \\
9 x & =1.8 \text { so } x=0.200000000000000000 \ldots
\end{aligned}
$$

Won't allow the representations ending in all 9's All other representations give elements of $\mathbb{R}^{[0,1)}$

Supposed Listing of $\mathbb{R}^{[0,1)}$

Flipped Diagonal

			$\begin{array}{ll} 3 & 4 \\ 0 & 0 \\ 3 & 3 \end{array}$	$\begin{aligned} & 4 \\ & 0 \\ & 3 \end{aligned}$	Flipping Rule: If digit is 5 , make it 1 If digit is not 5 , make it 5					
	0. $\quad{ }^{1} 1$	3^{5}								
	1	4	2^{5}	8	5	7	1	4	...	\ldots
	1	4	1	5^{1}	19	2	6	5
	1	2	1	2	2^{5}	1	2	2
	2	5	0	0	0	0^{5}	0	0
	7	1	8	2	8	1	8^{5}	2
	6	1	8	0	3	3	9	45
	\cdots	\cdots	\ldots		SE $3_{1} \cdot \cdot$...	\cdots	\cdots	${ }^{27}$

Flipped Diagonal Number D

$D=0 . \quad 1$
5
D is in $\mathbb{R}^{[0,1)} \quad 5$
But for all n wo have
$D \neq r_{n}$ since they differ on
$\mathbf{n}^{\text {th }}$ digit (which is not $\mathbf{0}$ or $\mathbf{9}$) 5
\Rightarrow list was incomplete 5
$\Rightarrow \mathbb{R}^{[0,1)}$ is not countable 5
Autumn 2012 CSE 311

The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ is not countable

The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$
is not countable

Non-computable functions

- We have seen that
- The set of all (Java) programs is countable
- The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ is not countable
- So...
- There must be some function $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ that is not computable by any program!

