CSE 311 Foundations of
Computing |
Lecture 27

FSM Limits, Pattern Matching
Autumn 2012

Announcements

* Reading assignments
— 7t Edition, Section 13.4
— 6t Edition, Section 12.4
— 5™ Edition, Section 11.4
* Next week
— 7th edition: 2.5 (Cardinality) + p. 201 and 13.5
— 6th edition: pp. 158-160 (Cardinality)+ p 177 and 12.5
— 5th edition: Pages 233-236 (Cardinality) and 11.5

Topic list and sample final exam problems have been posted
* Comprehensive final, roughly 67% of material post midterm
Review session, Saturday, December 8, 10 am — noon (tentatively)
* Final exam, Monday, December 10
— 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.
— If you have a conflict, contact instructors ASAP

Last lecture highlights

* NFAs from Regular Expressions

(01 U1)*0

Last lecture highlights

» “Subset construction”: NFA to DFA

Converting an NFA to a regular
expression
* Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits mod
3 sum of the digits is 0

Autumn 2012

Splicing out a node

* Label edges with regular expressions

oot oty 1072
oot ot : 10%1
ot oty : 20%2
tyot,ot, © 2041

umn 2012

Finite Automaton without t;

R;: 0]10%2

Ry 2]1011 Ry ° ad e N
Ry 1]20%2 C)

Ry 0]2071

R
Rs: Ry |RoR¢Rs SC

Final regular expression:
(0]10%2 | (2] 10*1)(0 | 20*1)*(1 |20*2))*

Generalized NFAs

* Like NFAs but allow
— Parallel edges
— Regular Expressions as edge labels
* NFAs already have edges labeled A or a

* An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

A string x is accepted iff there is a path from start to
final state labeled by a regular expression whose
language contains x

Starting from NFA

* Add new start state and final state
A

>0—A 10 >-—o
T A

* Then eliminate original states one by one,
keeping the same language, until it looks like:

e A -0
Final regular expression will be A

Only two simplification rules:

* Rule 1: For any two states g, and g, with

parallel edges (possibly q,=q,), replace

@, Pro-0

* Rule 2: Eliminate non-start/final state q; by

replacing all

O—LATF—@ by @@

for every pair of states q,, q, (even if q,=q,)

Automata Theory Summary

* Every DFA is an NFA
* Every NFA can be converted into a DFA that
accepts the same language
— However there may be an exponential increase in
the number of states
* Given a regular expression, we can construct
an NFA that recognizes it
Given an NFA we can construct an regular for
the strings accepted by it

What can Finite State Machines do?

* We’ ve seen how we can get DFAs to recognize

all regular languages

* What about some other languages we can

generate with CFGs?
—{0"":n>0}?

— Binary Palindromes?

— Strings of Balanced Parentheses?

A={0"1" : n20} cannot be recognized by any
DFA

Consider the infinite set of strings
S={A, 0, 00, 000, 0000, ...}
Claim: No two strings in S can end at the same
state of any DFA for A, so no such DFA can exist

Proof: Suppose n=m and 0" and 0™ end at the same
state p.

Since 0"1" is in A, following 1" after state p
must lead to a final state.

But then the DFA would accept 0™1"
which is a contradiction

The set B of binary palindromes
cannot be recognized by any DFA

Consider the infinite set of strings
S={A, 0, 00, 000, 0000, ...}
Claim: No two strings in S can end at the same
state of any DFA for B, so no such DFA can exist

Proof: Suppose nm and 0" and 0™ end at the same
state p.

Since 0"10" is in B, following 10" after state p
must lead to a final state.

But then the DFA would accept 0™10"
which is a contradiction

The set P of strings of balanced parentheses
cannot be recognized by any DFA

The set P of strings {11 | j = n?} cannot be
recognized by any DFA

Suppose 1 and 1k reach the same state p with j < k

1k1kk-) must reach an accepting state q
1i1k(1) must reach the same accepting state g

Thus, j+ k(k-1) = k2 — k + j must be a perfect square
Is that possible?

Pattern Matching

¢ Given
— astring s of n characters
— apattern p of m characters
— usually m<<n

* Find

— all occurrences of the pattern p in the string s

* Obvious algorithm:
— try to see if p matches at each of the positionsin s
« stop at a failed match and try the next position

Autum 2 CSE 17

Pattern p=XX XXXy
StNG S =X XXX XXX XXYXXXXXXXXXXY XX

Pattern p =Xy Xyy Xy Xy XX
SN S=XYXXYXYXYYXYXYXYYXYXYXX

SN S=XYXXYXYXYYXYXYXYYXYXYXX
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
XYXYYXYXYXX

21

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XY Xy

X
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
X

Xy
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
Xyxy
X

Xy
XyXyy
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
X

Xy
XyXyy
X

XYXYYXYXYXX

25

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
X

Xy
Xyxyy
X

XYXYYXYXYXX
XYXYYXYXYXX

String S=XYXXYXYXYYXYXYXYYXYXYXX
XYy XYy
X
Xy
Xyxyy
X
XYXYYXYXYXX
X

XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XY Xy
X
Xy
Xyxyy
X
XYXYYXYXYXX
X

XY X
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
X

Xy
XYyXyy
X
XYXYYXYXYXX
X
XY X
X
XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
Xyxy
X

Xy
Xyxyy
X
XYXYYXYXYXX
X
Xy X
X
X

XYXYYXYXYXX

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy
X

Xy
XyXyy
X

XYXYYXYXYXX
X
XY X
X
X
XyXxyy
XYXYYXYXYXX

31

StiNg S=XYXXYXYXYYXYXYXYYXYXYXX

Xy Xy
X
Xy
XyXyy
X
XYXYYXYXYXX
Worst-case time X YV %
o(mn) ¥
X
XyXyy
X
XYXYYXYXYXX

String S=XYXXYXYXYYXYXYXYYXYXYXX
XyXxy

Lots of wasted work
S

XYXYYXYXYXX

XYXYYXYXYXX

Better Pattern Matching via Finite Automata

* Build a DFA for the pattern (preprocessing) of size
O(m)
— Keep track of the ‘longest match currently active’
— The DFA will have only m+1 states

Run the DFA on the string n steps

* Obvious construction method for DFA will be O(m?)
but can be done in O(m) time.

Total O(m+n) time

Building a DFA for the pattern

Pattern p=xy Xy y Xy Xy x x

V)

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy x x

Sttt ettt

V)

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy x x

37

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy x x

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy X X

Generalizing

* Can search for arbitrary combinations of patterns
— Not just a single pattern
— Build NFA for pattern then convert to DFA ‘on the fly’ .

* Compare DFA constructed above with subset
construction for the obvious NFA.

