CSE 311 Foundations of Computing I

Lecture 27 FSM Limits, Pattern Matching Autumn 2012

CSE 311

Announcements

- Reading assignments
 - 7th Edition, Section 13.4
 - 6th Edition, Section 12.4 5th Edition, Section 11.4
- Next week

 - 7th edition: 2.5 (Cardinality) + p. 201 and 13.5
 6th edition: pp. 158-160 (Cardinality)+ p 177 and 12.5
 - 5th edition: Pages 233-236 (Cardinality) and 11.5
- Topic list and sample final exam problems have been posted
- Comprehensive final, roughly 67% of material post midterm
- Review session, Saturday, December 8, 10 am noon (tentatively)
- Final exam, Monday, December 10
 - 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.
 - If you have a conflict, contact instructors ASAP

Last lecture highlights

• NFAs from Regular Expressions

(01 ∪1)*0

Last lecture highlights

"Subset construction": NFA to DFA

Converting an NFA to a regular expression

- · Consider the DFA for the mod 3 sum
 - Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

CSE 311

Splicing out a node

· Label edges with regular expressions

 $\rightarrow t_1 \rightarrow t_0$: 10*2 $\rightarrow t_1 \rightarrow t_2$: 10*1

CSE 311

Generalized NFAs

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 - NFAs already have edges labeled λ or α
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Starting from NFA

· Add new start state and final state

· Then eliminate original states one by one, keeping the same language, until it looks like:

· Final regular expression will be A

Only two simplification rules:

• Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

• Rule 2: Eliminate non-start/final state q₃ by replacing all

for every pair of states q_1 , q_2 (even if $q_1=q_2$)

Automata Theory Summary

- · Every DFA is an NFA
- Every NFA can be converted into a DFA that accepts the same language
 - However there may be an exponential increase in the number of states
- · Given a regular expression, we can construct an NFA that recognizes it
- · Given an NFA we can construct an regular for the strings accepted by it

What can Finite State Machines do?

- We've seen how we can get DFAs to recognize all regular languages
- · What about some other languages we can generate with CFGs?
 - $-\{0^{n}1^{n}:n\geq 0\}$?
 - Binary Palindromes?
 - Strings of Balanced Parentheses?

CSE 311

$A=\{0^n1^n : n \ge 0\}$ cannot be recognized by any DFA

Consider the infinite set of strings $S={\lambda, 0, 00, 000, 0000, ...}$

Claim: No two strings in S can end at the same state of any DFA for A, so no such DFA can exist

Proof: Suppose n≠m and 0ⁿ and 0^m end at the same state p.

Since 0ⁿ1ⁿ is in A, following 1ⁿ after state p must lead to a final state.

But then the DFA would accept 0m1n which is a contradiction

The set B of binary palindromes cannot be recognized by any DFA

Consider the infinite set of strings $S={\lambda, 0, 00, 000, 0000, ...}$

Claim: No two strings in S can end at the same state of any DFA for B, so no such DFA can exist

Proof: Suppose n≠m and 0ⁿ and 0^m end at the same

state p.

Since 0ⁿ10ⁿ is in B, following 10ⁿ after state p must lead to a final state.

But then the DFA would accept 0^m10ⁿ which is a contradiction

The set P of strings of balanced parentheses cannot be recognized by any DFA

The set P of strings $\{1^j \mid j = n^2\}$ cannot be recognized by any DFA

Suppose 1^j and 1^k reach the same state p with j < k

1k1k(k-1) must reach an accepting state q 1j1k(k-1) must reach the same accepting state q

Thus, $j + k(k-1) = k^2 - k + j$ must be a perfect square Is that possible?

Pattern Matching

- Given
 - a string s of n characters
 - a pattern **p** of **m** characters
 - usually m<<n
- Find
 - all occurrences of the pattern ${\bf p}$ in the string ${\bf s}$
- · Obvious algorithm:
 - try to see if ${\bf p}$ matches at each of the positions in ${\bf s}$
 - stop at a failed match and try the next position

CSE 311

Pattern $\mathbf{p} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{y}$ String $\mathbf{s} = \mathbf{x} \times \mathbf{x} \times$

CSE 311 18

Better Pattern Matching via Finite Automata

- Build a DFA for the pattern (preprocessing) of size O(m)
 - Keep track of the 'longest match currently active'
 - The DFA will have only m+1 states
- Run the DFA on the string **n** steps
- Obvious construction method for DFA will be O(m²) but can be done in O(m) time.
- Total O(m+n) time

Autumn 2012 CSE 311 34

Generalizing

- Can search for arbitrary combinations of patterns
 - Not just a single pattern
 - $-\,$ Build NFA for pattern then convert to DFA 'on the fly' .
 - Compare DFA constructed above with subset construction for the obvious NFA.

umn 2012 CSE 311