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Announcements 

• Reading assignments 
– 7th Edition,  Sections 13.3 and 13.4 
– 6th Edition,  Section 12.3 and 12.4 
– 5th Edition,  Section 11.3 and 11.4 

 
• Problem 6 dropped from Homework 9 

 

• Topic list and sample final exam problems have been posted 
• Comprehensive final, roughly 67% of material post midterm 
• Review session TBA (Saturday, December 8) 
• Final exam,  Monday, December 10 

– 2:30-4:20 pm or 4:30-6:20 pm,  Kane 220. 
– If you have a conflict, contact instructors ASAP 
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Last lecture highlights 

Finite State Machines with output at states 

 

State minimization 
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Nondeterministic Finite Automaton (NFA) 

• Graph with start state, final states, edges labeled by 
symbols (like DFA) but 

– Not required to have exactly 1 edge out of each state 
labeled by each symbol  - can have 0 or >1 

– Also can have edges labeled by empty string  

• Definition: The language recognized by an NFA is the 
set of strings  x that label some path from its start 
state to one of its final states 

 

Autumn 2012 CSE 311 4 
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Three ways of thinking about NFAs 

• Outside observer:  Is there a path labeled by x 
from the start state to some final state?   

 

• Perfect guesser: The NFA has input x and 
whenever there is a choice of what to do it 
magically guesses a good one (if one exists) 

 

• Parallel exploration:  The NFA computation 
runs all possible computations on x step-by-
step at the same time in parallel 
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Conversion of NFAs to a DFAs 

• Proof Idea: 

– The DFA keeps track of ALL the states that the part 
of the input string read so far can reach in the NFA 

 

– There will be one state in the DFA for each subset 
of states of the NFA that can be reached by some 
string 
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1 in third position from end 
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Redrawing 
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Conversion of NFAs to a DFAs 

• New start state for DFA 

– The set of all states reachable from the start state 
of the NFA using only edges labeled  
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Conversion of NFAs to a DFAs 

• For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s  
– Add an edge labeled s to state corresponding to T, the set 

of states of the NFA reached by  
• starting from some state in S, then 
• following one edge labeled by s, and 
• then following some number of edges labeled by                                                   

– T will be  if no edges from S labeled s exist 
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Conversion of NFAs to a DFAs 

• Final states for the DFA 

– All states whose set contain some final state of the 
NFA 
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Example: NFA to DFA 
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Example: NFA to DFA 
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Example: NFA to DFA 
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Exponential blow-up in simulating 
nondeterminism 

• In general the DFA might need a state for every 
subset of states of the NFA 
– Power set of the set of states of the NFA 

– n-state NFA yields DFA with at most 2n states 

– We saw an example where roughly 2n is necessary 
• Is the 10th char from the end a 1? 

 

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid of 
nondeterminism for polynomial-time algorithms 
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NFAs and Regular Expressions 

Theorem:   For any set of strings (language) A 

described by a regular expression, there is an 
NFA that recognizes A.   

 

Proof idea:   Structural induction based on the 
recursive definition of regular expressions... 

 

Note: One can also find a regular expression to describe the 
language recognized by any NFA but we won’t prove that fact 
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Regular expressions over  

• Basis: 

– ,  are regular expressions 

– a is a regular expression for any a   

• Recursive step: 

– If A and B are regular expressions then so are: 

• (A  B) 

•  (AB) 

• A* 
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Basis  

• Case : 

 
 

• Case : 

 
 

• Case a: 

 

Autumn 2012 CSE 311 23 

Basis  

• Case : 

 
 

• Case : 

 
 

• Case a: 
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Inductive Hypothesis 

• Suppose that for some regular expressions A 
and B there exist NFAs NA and NB such that   
NA recognizes the language given by A and     
NB recognizes the language given by B 
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NA NB 

Inductive Step 

• Case (A  B): 
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NA 

NB 

Inductive Step 

• Case (A  B): 
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Inductive Step 

• Case (AB): 
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NA NB 

Inductive Step 

• Case (AB): 
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Inductive Step 

• Case A* 
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NA 



Inductive Step 

• Case A* 
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Build a NFA for (01 1)*0 
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Solution 
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Converting an NFA to a regular 
expression 

• Consider the DFA for the mod 3 sum 

– Accept strings from {0,1,2}* where the digits mod 
3 sum of the digits is 0 
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Splicing out a node 

• Label edges with regular expressions 
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t0→t1→t0 :   10*2 

t0→t1→t2 :   10*1 

t2→t1→t0 :   20*2 

t2→t1→t2 :   20*1 

 

 

Finite Automaton without t1 
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t0 t2 

R1 

R1:   0 | 10*2 

R2:   2 | 10*1 

R3:   1 | 20*2 

R4:   0 | 20*1 

 

 

 

R5:   R1 | R2R4*R3 
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Final regular expression: 

(0 | 10*2 | (2 | 10*1)(0 | 20*1)*(1 |20*2))* 


