CSE 311 Foundations of Computing I

Lecture 26
NFAs, Regular Expressions, and Equivalence with DFAs

Autumn 2012

Autumn 2012
CSE 311

Announcements

- Reading assignments
- $7^{\text {th }}$ Edition, Sections 13.3 and 13.4
- $6^{\text {th }}$ Edition, Section 12.3 and 12.4
- $5^{\text {th }}$ Edition, Section 11.3 and 11.4
- Problem 6 dropped from Homework 9
- Topic list and sample final exam problems have been posted
- Comprehensive final, roughly 67\% of material post midterm
- Review session TBA (Saturday, December 8)
- Final exam, Monday, December 10
- 2:30-4:20 pm or 4:30-6:20 pm, Kane 220.
- If you have a conflict, contact instructors ASAP

Autumn 2012
CSE 311

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string λ
- Definition: The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states
 CSE 311

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-bystep at the same time in parallel

[^0]CSE 311

Conversion of NFAs to a DFAs

- Proof Idea:
- The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

- New start state for DFA
- The set of all states reachable from the start state of the NFA using only edges labeled λ

Autumn 2012

Conversion of NFAs to a DFAs

- For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
- Add an edge labeled sto state corresponding to T, the set of states of the NFA reached by
- starting from some state in S , then
- following one edge labeled by s, and
- then following some number of edges labeled by λ
- T will be \varnothing if no edges from S labeled s exist

Conversion of NFAs to a DFAs

- Final states for the DFA
- All states whose set contain some final state of the NFA

Example: NFA to DFA

DFA

Example: NFA to DFA

Example: NFA to DFA

DFA

NFAs and Regular Expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Note: One can also find a regular expression to describe the language recognized by any NFA but we won' t prove that fact

Autumn 2012
CSE 311 21

Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
$-n$-state NFA yields DFA with at most 2^{n} states
- We saw an example where roughly 2^{n} is necessary - Is the $10^{\text {th }}$ char from the end a 1 ?
- The famous " $\mathrm{P}=\mathrm{NP}$?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

Regular expressions over Σ

- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A*

Autumn 2012
CSE 311

Inductive Hypothesis

- Suppose that for some regular expressions \mathbf{A} and B there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by \mathbf{A} and N_{B} recognizes the language given by B

N_{A}

N_{B}

Uumm 2012
CSE 311

Inductive Step

- Case $(\mathbf{A} \cup \mathbf{B})$:

${ }_{\text {Cese } 311} \mathrm{~N}_{\mathrm{B}}$

Inductive Step

- Case (AB):

Autumn 2012 CSE 311

Inductive Step

- Case A*

Autumn 2012
CSE 311

Converting an NFA to a regular expression

- Consider the DFA for the mod 3 sum
- Accept strings from $\{0,1,2\}^{*}$ where the digits mod 3 sum of the digits is 0

Splicing out a node

- Label edges with regular expressions

$$
\begin{array}{ll}
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 10^{\star} 2 \\
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 10^{\star} 1 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 20^{\star} 2 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 20^{\star} 1
\end{array}
$$

[^0]: Autumn 2012

