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Announcements 

• Reading assignments 

– 7th Edition,  Sections 13.3 and 13.4 

– 6th Edition,  Section 12.3 and 12.4 

– 5th Edition,  Section 11.3 and 11.4 
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State Machines with Output 
   Vending Machine 
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Enter 15 cents in dimes or nickels 

Press S or B for a candy bar 

Vending Machine, Final Version 
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State Minimization 

• Many different FSMs (DFAs) for the same 
problem 

• Take a given FSM and try to reduce its state 
set by combining states 

– Algorithm will always produce the unique minimal 
equivalent machine (up to renaming of states) but 
we won’t prove this 

Autumn 2012 CSE 311 5 

State minimization 

• Recognizing strings with odd length 

Autumn 2012 CSE 311 6 

s0 

s2 s3 

s1 

0,1 

0,1 

0,1 

0,1 



State minimization algorithm 

1. Put states into groups based on their outputs (or 
whether they are final states or not) 

2. Repeat the following until no change happens 

a. If there is a symbol s so that not all states in a group 
G agree on which group s leads to, split G into 
smaller groups based on which group the states go 
to on s 

 

 G1 

G2 

G3 

State Minimization Example 
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state  
transition table 

present         next state        output 
  state 0 1 2 3  
    S0 S0 S1 S2 S3 1 
    S1 S0 S3 S1 S5 0 
    S2 S1 S3 S2 S4 1 
    S3 S1 S0 S4 S5 0 
    S4 S0 S1 S2 S5 1 
    S5 S1 S4 S0 S5 0 
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Can combine states S0-S4 and 

S3-S5.   

 

In table replace all S4 with S0  

and all S5 with S3 

Minimized Machine 
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state  
transition table 

present         next state        output 
  state 0 1 2 3  
    S0 S0 S1 S2 S3 1 
    S1 S0 S3 S1 S3 0 
    S2 S1 S3 S2 S0 1 
    S3 S1 S0 S0 S3 0 
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Another way to look at DFAs 
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Lemma:  x is in the language recognized by a DFA iff  

x labels a path from the start state to some final state 

Definition: The label of a path in a DFA is the  

concatenation of all the labels on its edges in order 

Nondeterministic Finite Automaton (NFA) 

• Graph with start state, final states, edges labeled by 
symbols (like DFA) but 

– Not required to have exactly 1 edge out of each state 
labeled by each symbol  - can have 0 or >1 

– Also can have edges labeled by empty string  

• Definition: x is in the language recognized by an NFA 
iff x labels a path from the start state to some final 
state 
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Design an NFA to recognize the set of binary strings 
that contain 111 or have an even # of 1’s 
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Finite state machines and regular 
expressions 

• Every regular expression can be recognized by 
a NFA 

• Every NSA can be converted into an equivalent 
regular expression 

• Every NFA can be converted into an equivalent 
DFA 
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1 and 3 will be sketched in class 

NFAs and DFAs 

Every DFA is an NFA 

– DFAs have requirements that NFAs don’t have 

 

Can NFAs recognize more languages?   No! 

 

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language 
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Conversion of NFAs to a DFAs 

• Proof Idea: 

– The DFA keeps track of ALL the states that the part 
of the input string read so far can reach in the NFA 

 

– There will be one state in the DFA for each subset 
of states of the NFA that can be reached by some 
string 
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Conversion of NFAs to a DFAs 

• New start state for DFA 

– The set of all states reachable from the start state 
of the NFA using only edges labeled  
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NFA DFA 

Conversion of NFAs to a DFAs 

• For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s  
– Add an edge labeled s to state corresponding to T, the set 

of states of the NFA reached by  
• starting from some state in S, then 
• following one edge labeled by s, and 
• then following some number of edges labeled by                                                   

– T will be  if no edges from S labeled s exist 
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Conversion of NFAs to a DFAs 

• Final states for the DFA 

– All states whose set contain some final state of the 
NFA 
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Example: NFA to DFA 
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Example: NFA to DFA 
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Exponential blow-up in simulating 
nondeterminism 

• In general the DFA might need a state for every 
subset of states of the NFA 
– Power set of the set of states of the NFA 

– n-state NFA yields DFA with at most 2n states 

– We saw an example where roughly 2n is necessary 
• Is the 10th char from the end a 1? 

 

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid of 
nondeterminism for polynomial-time algorithms 
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