

State Minimization

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
- Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State minimization

- Recognizing strings with odd length

State minimization algorithm

1. Put states into groups based on their outputs (or whether they are final states or not)
2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string λ
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

Design an NFA to recognize the set of binary strings that contain 111 or have an even \# of 1's

Autumn 2012

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don' t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Conversion of NFAs to a DFAs

- New start state for DFA
- The set of all states reachable from the start state of the NFA using only edges labeled λ

NFA

DFA

Conversion of NFAs to a DFAs

- For each state of the DFA corresponding to a set S of states of the NFA and each symbol s
- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S , then
- following one edge labeled by s, and
- then following some number of edges labeled by λ
- T will be \varnothing if no edges from S labeled s exist

Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
- n-state NFA yields DFA with at most 2^{n} states
- We saw an example where roughly 2^{n} is necessary
- Is the $10^{\text {th }}$ char from the end a 1 ?
- The famous " $P=N P$?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

