

Announcements

- Reading assignments
$-7^{\text {th }}$ Edition, Sections 13.3 and 13.4
$-6^{\text {th }}$ Edition, Section 12.3 and 12.4
- $5^{\text {th }}$ Edition, Section 11.3 and 11.4

Last lecture highlights

Finite state machines

- States, transitions, start state, final states
- Languages recognized by FSMs

Non-determinism

- A non-deterministic finite automaton (NFA) allows multiple outputs to have the same label
- A string s is accepted by a NFA if there is some path through the NFA with labels s that reaches an accepting state

Autumn 2012
CSE 311

Design an NFA to recognize the set of binary strings that contain 111 or have an even \# of 1's

CSE 311

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string λ
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

Autumn 2011

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-bystep at the same time in parallel

[^0]CSE 311

[^0]: Autumn 2011

