

Announcements

- Reading assignments
- $7^{\text {th }}$ Edition, Sections 13.3 and 13.4
$-6^{\text {th }}$ Edition, Section 12.3 and 12.4
- $5^{\text {th }}$ Edition, Section 11.3 and 11.4

Relational Databases: Keys

- An attribute is a key if all its values in the database are always distinct

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Which attribute is the key?
Why is Student_Name not a key?

Types of Relationships in Relational Databases

- one-one:

Finite state machines

States

Transitions on inputs
Start state and final states
The language recognized by a machine is the set of strings that reach a final state

State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Applications of Finite State Machines

(a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

Design a DFA that accepts strings
with a 1 three positions from the end

State machines with output

	Input		Output
State	L	R	
s_{1}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	Beep
s_{2}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{3}$	
$\mathrm{~s}_{3}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{4}$	
$\mathrm{~s}_{4}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	Beep

"Tug-of-war"

SWITHERS

Enter 15 cents in dimes or nickels

How does the size of a DFA to recognize " $10^{\text {th }}$
character is a 1 " compare with the size of a DFA to recognize " $10^{\text {th }}$ character from the end is 1 "?

Recognize strings with an even

 number of 2's and a mod 3 sum of 0

Press S or B for a candy bar

