

Announcements

- Reading Assignment
$-7^{\text {th }}$ Edition, Section 9.1 and pp. 594-601
$-6^{\text {th }}$ Edition, Section 8.1 and pp. 541-548
- $5^{\text {th }}$ Edition, Section 7.1 and pp. 493-500

More examples

- All binary strings that don't contain 101
- Regular expressions over Σ
- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A*

Autumn 2012
CSE 311

Highlight from last lecture:
 Regular expressions

More examples
- All binary strings that don't contain 101

Regular expressions can't specify everything we might want

Context Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set \mathbf{V} of variables that can be replaced
- Alphabet Σ of terminal symbols that can' t be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The rules involving a variable \mathbf{A} are written as
$A \rightarrow w_{1}\left|w_{2}\right| \ldots \mid w_{k}$ where each w_{i} is a string of variables and terminals - that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

How Context-Free Grammars generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for A
-Write this as $x A y \Rightarrow x w y$
-Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Autumn 2012

Sample Context-Free Grammars

- Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O | 1 S 1 | 0 | 1 | \lambda}$
- Example: $\mathbf{S} \rightarrow \mathbf{0 S}|\mathbf{S} 1| \lambda$

Sample Context-Free Grammars

- Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$ all strings with same \# of 0's and 1's with all 0's before 1's.
- Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \lambda$

Simple Arithmetic Expressions
$\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}|(\mathbf{E})|\mathrm{x}| \mathrm{y}|\mathrm{z}| 0|1| 2|3| 4|5|$ $6|7| 8 \mid 9$

Generate $(2 * x)+y$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two fundamentally different ways

Building in Precedence in Simple Arithmetic Expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number
$\mathrm{E} \rightarrow \mathrm{T} \mid \mathrm{E}+\mathbf{T}$
$T \rightarrow F \mid F * T$
$F \rightarrow(E)|I| N$
$I \rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$ simultaneous recursive definition of the sets of strings generated by each of its variables
- Sometimes necessary to use more than one

Another name for CFGs

- BNF (Backus-Naur Form) grammars
- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
- <identifier>, <if-then-else-statement>, <assignment-statement>, <condition>
- ::= used instead of \rightarrow

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase> <noun phrase>::=<article><adjective><noun> <verb phrase>::=<verb><adverb>|<verb><object> <object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly The red truck hit a parked car

Relations

tatement:
((identifier | "case" constant-expression | "default") ":") (expression
"if" " (" expression ")" statement
if" " (" expression ")" statement "else" statement
"switch" "(" expression ")"" statement

"for"" " ("expression? $" ;$ " expression $"$ ";" expression2 ")" statement
"continue" ", ;"
"break" "';"
"return" expression
";
block: "(" declaration* statement* ")"
expression:
assignmen
assignment-expressions
assignment-expression:
unary-expression (
" "^=" | " $1=$ "
)* conditional-expression
conditional-expression:
logical-oR-expression ("?" expression ":" conditional-expression)

Definition of Relations
Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set,
A binary relation on A is a subset of $A \times A$

Properties of Relations

Let R be a relation on A
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

