
CSE 311 Foundations of
Computing I

Lecture 18
Recursive Definitions and Structural

Induction
Autumn 2012

Autumn 2012 CSE 311 1

Announcements

• Reading assignments

– 7th Edition, Section 5.3 and pp. 878-880

– 6th Edition, Section 4.3 and pp. 817-819

– 5th Edition, Section 3.4 and pp. 766

• Midterm statistics:

– Min 40, Max 100, Median 80, Mean 78

Autumn 2012 CSE 311 2

Highlight from last lecture:
Recursive Definitions - General Form

• Recursive definition

– Basis step: Some specific elements are in S

– Recursive step: Given some existing named
elements in S some new objects constructed from
these named elements are also in S.

– Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive steps

Autumn 2012 CSE 311 3

Structural Induction: proving
properties of recursively defined sets

How to prove x∈S. P(x) is true:
•Base Case: Show that P is true for all specific
elements of S mentioned in the Basis step
•Inductive Hypothesis: Assume that P is true for
some arbitrary values of each of the existing named
elements mentioned in the Recursive step
•Inductive Step: Prove that P holds for each of the
new elements constructed in the Recursive step
using the named elements mentioned in the
Inductive Hypothesis
•Conclude that x∈S. P(x)

Autumn 2012 CSE 311 4

Structural Induction versus
Ordinary Induction

• Ordinary induction is a special case of
structural induction:
– Recursive Definition of ℕ

• Basis: 0 ∈ ℕ

• Recursive Step: If k ∈ ℕ then k+1 ∈ ℕ

• Structural induction follows from ordinary
induction
• Let Q(n) be true iff for all x∈S that take n Recursive

steps to be constructed, P(x) is true.

Autumn 2012 CSE 311 5

Using Structural Induction
• Let S be given by

– Basis: 6  S; 15  S;

– Recursive: if x, y  S, then x + y  S.

• Claim: Every element of S is divisible by 3

Autumn 2012 CSE 311 6

Strings

• An alphabet  is any finite set of characters.

• The set * of strings over the alphabet  is
defined by

– Basis:   * ( is the empty string)

– Recursive: if w  *, x  , then wx  *

Autumn 2012 CSE 311 7

Structural Induction for strings

• Let S be a set of strings over {a,b} defined as
follows

– Basis: a ∈ S

– Recursive:

• If w ∈ S then aw ∈ S and baw ∈ S

• If u ∈ S and v ∈ S then uv ∈ S

• Claim: if w ∈ S then w has more a’s than b’s

Autumn 2012 CSE 311 8

Function definitions on recursively
defined sets

len () = 0;

len (wa) = 1 + len(w); for w  *, a  

Reversal:
R = 

(wa)R = awR for w  *, a  

Concatenation:

x •  = x for x  *

x • wa = (x • w)a for x, w  *, a  

Autumn 2012 CSE 311 9

len(x•y)=len(x)+len(y) for all strings x and y

Autumn 2012 CSE 311 10

Rooted Binary trees

• Basis: • is a rooted binary tree

• Recursive Step: If and are rooted

 binary trees
 then so is:

Autumn 2012 CSE 311 11

T1 T2

T1 T2

Functions defined on rooted binary trees

• size(•)=1

• size() = 1+size(T1)+size(T2)

• height(•)=0

• height()=1+max{height(T1),height(T2)}

Autumn 2012 CSE 311 12

T1 T2

T1 T2

For every rooted binary tree T
size(T)  2height(T)+1 -1

Autumn 2012 CSE 311 13

Languages: Sets of Strings

• Sets of strings that satisfy special properties
are called languages. Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– All strings over alphabet 

– Palindromes over 

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s (HW6)

Autumn 2012 CSE 311 14

Regular Expressions over 

• Each is a “pattern” that specifies a set of strings

• Basis:
– ,  are regular expressions

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

• (A  B)

• (AB)

• A*

Autumn 2012 CSE 311 15

Each regular expression is a “pattern”

•  matches the empty string

• a matches the one character string a

• (A  B) matches all strings that either A
matches or B matches (or both)

• (AB) matches all strings that have a first part
that A matches followed by a second part that
B matches

• A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Autumn 2012 CSE 311 16

Examples
• 0*

• 0*1*

• (0  1)*

• (0*1*)*

• (0  1)* 0110 (0  1)*

• (0  1)* (0110  100)(0  1)*

Autumn 2012 CSE 311 17

Regular expressions in practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of hypertext scripting language PHP used for web
programming

– Also in text processing programming language Perl

Autumn 2012 CSE 311 18

Regular Expressions in PHP
• int preg_match (string $pattern , string $subject,...)

• $pattern syntax:
[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A  B)
a? zero or one of a (A  )
a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)

Autumn 2012 CSE 311 19

More examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

Autumn 2012 CSE 311 20

Regular expressions can’t specify
everything we might want

• Fact: Not all sets of strings can be
specified by regular expressions

–One example is the set of binary strings
with equal #’s of 0’s and 1’s from HW6

Autumn 2012 CSE 311 21

