CSE 311 Foundations of
Computing |

Lecture 18

Recursive Definitions and Structural
Induction

Autumn 2012

Announcements

* Reading assignments
— 7t Edition, Section 5.3 and pp. 878-880
— 6t Edition, Section 4.3 and pp. 817-819
— 5th Edition, Section 3.4 and pp. 766

* Midterm statistics:
— Min 40, Max 100, Median 80, Mean 78

Highlight from last lecture:
Recursive Definitions - General Form

* Recursive definition
— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed from
these named elements are also in S.

— Exclusion rule: Every elementin S follows from
basis steps and a finite number of recursive steps

Structural Induction: proving

properties of recursively defined sets

How to prove Vx€ES. P(x) is true:

*Base Case: Show that P is true for all specific
elements of S mentioned in the Basis step
*Inductive Hypothesis: Assume that P is true for
some arbitrary values of each of the existing named
elements mentioned in the Recursive step
*Inductive Step: Prove that P holds for each of the
new elements constructed in the Recursive step

using the named elements mentioned in the
Inductive Hypothesis

*Conclude that Vx€ES. P(x)

tumn 2012

Structural Induction versus
Ordinary Induction
* Ordinary induction is a special case of
structural induction:
— Recursive Definition of N
* Basis: 0EN
* Recursive Step: If k € Nthenk+1 €N

* Structural induction follows from ordinary
induction

* Let Q(n) be true iff for all x€S that take n Recursive
steps to be constructed, P(x) is true.

Using Structural Induction
e Let S be given by
—Basis: 6€S; 15€S;
— Recursive: ifx,y € S, thenx+y e S.

* Claim: Every element of S is divisible by 3

Strings

* An alphabet ¥ is any finite set of characters.

* The set X* of strings over the alphabet X is
defined by
—Basis: L € T* (A is the empty string)
— Recursive: ifw € £*,x € X, thenwx € T*

Structural Induction for strings

* Let S be a set of strings over {a,b} defined as
follows
—Basis: a €S
— Recursive:

e Ifw € Sthenaw € Sand baw €S
e lIfueSandv€ESthenuves

e Claim: if w € S then w has more a’s than b’s

Function definitions on recursively
defined sets
len (M) =0;

len (wa) =1+ len(w); forw e Z*,ae X

Reversal:
AR=A
(wa)R=awRforw e Z*,a e X

Concatenation:
XeA=xforx e T*
Xewa=(Xew)aforx, wex*aeclX

utumn 2012 CSE 311

len(xey)=len(x)+len(y) for all strings x and y

Rooted Binary trees

* Basis: e isarooted binary tree
e

* Recursive Step: If k .T "'-._‘are rooted

binary trees
then so is:

Functions defined on rooted binary trees

* size(e)=1

e

. size(.,T

S

) = L+size(T,)+size(T,)

-

* height(*)=0

. height(,A.‘)=1+max{height(T,),height(T,)}
R Ty

RN

For every rooted binary tree T
size(T) < height(T)+1 _q

Languages: Sets of Strings

* Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a 0 aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of 0’s and 1’s (HW®6)

14

Regular Expressions over X

* Each is a “pattern” that specifies a set of strings
* Basis:
— &, A are regular expressions
—ais a regular expression forany g € X
Recursive step:
— If A and B are regular expressions then so are:
* (AUB)
* (AB)
o A*

Each regular expression is a “pattern”

* A matches the empty string

* a matches the one character string a

* (A U B) matches all strings that either A

matches or B matches (or both)

(AB) matches all strings that have a first part

that A matches followed by a second part that

B matches

* A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

tumn 2012 CSE 311 16

Examples
. o*
. 0%1*
. U1
. (0*1%*

*» (0u1)*0110(0VL 1)*

. (0L 1)* (0110 L 100)(0 L 1)*

Regular expressions in practice

¢ Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

¢ Pattern matching using regular expressions is an essential
feature of hypertext scripting language PHP used for web
programming
— Also in text processing programming language Perl

Regular Expressions in PHP

* int preg_match (string Spattern, string Ssubject,...)
* Spattern syntax:
[01] aOoral “startofstring $ endofstring
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (AUB)
a? zeroor one of a (AUN)
ax zero or more of a A*

a+ one or more of a AA*

* eg A[\-+]1?[0-91*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

More examples

* All binary strings that have an even # of 1's

* All binary strings that don’t contain 101

Regular expressions can’t specify
everything we might want

* Fact: Not all sets of strings can be
specified by regular expressions

—One example is the set of binary strings
with equal #'s of 0’s and 1’s from HW6

