CSE 311 Foundations of Computing I

Lecture 17
Recursive Definitions and Structural Induction Autumn 2012

Autumn 2012

Announcements

- Reading assignments
- Today:
- $5.37^{\text {th }}$ Edition
- $4.36^{\text {th }}$ Edition
- $3.45^{\text {th }}$ Edition (not all there)
- Midterm Friday, Nov 2
- Closed book, closed notes
- Practice midterm available on the Web
- Extra office hours Thursday (midterm review)
- 3:30 pm, Dan Suciu, Gowen 201
- 4:30 pm, Richard Anderson, Gowen 201

Fibonacci Numbers

$$
f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}
$$

$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$

- Strong Induction proof layout:

1. By induction we will show that $\mathrm{P}(\mathrm{n})$ is true for every $\mathrm{n} \geq 0$
2. Base Case: Prove $\mathrm{P}(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer
$k \geq 0, P(j)$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $\mathrm{P}(\mathrm{j})$ is true for all values $\leq \mathrm{k}$
5. Conclusion: Result follows by induction

Autumn 2012
CSE 311

Bounding the Fibonacci Numbers

Theorem: $2^{n / 2-1} \leq \mathrm{f}_{\mathrm{n}}$ for $\mathrm{n} \geq 1$
Base cases: $2^{1 / 2-1} \leq 1=f_{1} ; 2^{2 / 2-1}=1=f_{2}$
Inductive step:
Assume that for some $\mathrm{k} \geq 2, \mathrm{P}(1), \mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{K})$

$$
\begin{aligned}
f_{k+1}=f_{k}+f_{k-1} & \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1} \\
& =2 \cdot 2^{(k-1) / 2-1}=2^{(k+1) / 2-1}
\end{aligned}
$$

Autumn 2012

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$
Recursive:
if $[x, y, z] \in S, \alpha$ in R, then $[\alpha x, \alpha y, \alpha z] \in S$
if $\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S$
then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$

Powers of 3
Autumn 2012

Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis: λ is a palindrome and any a $\in \Sigma$ is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

Functions defined on rooted binary trees

- $\operatorname{size}(\cdot)=1$
- $\operatorname{size}(\overbrace{T_{1}}^{2})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$
- height $(\bullet)=0$

