CSE 311 Foundations of Computing I

Lecture 16 **Induction and Recursive Definitions** Autumn 2012

CSE 311

Announcements

- · Reading assignments
 - Today:
 - 5.2, 5.3 7th Edition
 - 4.2, 4.3 6th Edition
 3.3, 3.4 5th Edition
- Midterm Friday, Nov 2
 - Closed book, closed notes
 - Practice midterm available on the Web
 - Cover class material up to and including induction.
- Extra office hours Thursday (midterm review)
 - 3:30 pm, Dan Suciu, Gowen 201
 - 4:30 pm, Richard Anderson, Gowen 201

CSE 311

Highlights from last lecture

· Mathematical Induction

$$\begin{array}{c} P(0) \\ \underline{\forall \ k \ge 0 \ (P(k) \rightarrow P(k+1))} \\ \therefore \ \forall \ n \ge 0 \ P(n) \end{array}$$

- Induction proof layout:
 - 1. By induction we will show that P(n) is true for every n≥0
 - 2. Base Case: Prove P(0)
 - Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer k ≥ 0
 - 4. Inductive Step: Prove that P(k+1) is true using Inductive Hypothesis that P(k) is true
 - 5. Conclusion: Result follows by induction

Harmonic Numbers

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

Prove $H_{2^n} \ge 1 + \frac{n}{2}$ for all $n \ge 1$

Cute Application: Checkerboard tiling with Trinominos

Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

Strong Induction

P(0) $\forall k ((P(0) \land P(1) \land P(2) \land ... \land P(k)) \rightarrow P(k+1))$ ∴ ∀ n P(n)

> Follows from ordinary induction applied to $Q(n) = P(0) \wedge P(1) \wedge P(2) \wedge ... \wedge P(n)$

CSE 311

Strong Induction English Proofs

- By induction we will show that P(n) is true for every n≥0
- 2. Base Case: Prove P(0)
- Inductive Hypothesis:
 Assume that for some arbitrary integer k ≥ 0, P(j) is true for every j from 0 to k
- Inductive Step:
 Prove that P(k+1) is true using the Inductive
 Hypothesis (that P(j) is true for all values ≤ k)
- 5. Conclusion: Result follows by induction

Autumn 2012

CSE 311

Every integer ≥ 2 is the product of primes

Autumn 2012

CSE 311 8

Recursive Definitions of Functions

•
$$F(0) = 0$$
; $F(n + 1) = F(n) + 1$;

•
$$G(0) = 1$$
; $G(n + 1) = 2 \times G(n)$;

•
$$0! = 1$$
; $(n+1)! = (n+1) \times n!$

•
$$H(0) = 1$$
; $H(n + 1) = 2^{H(n)}$

Autumn 201:

SE 311

Fibonacci Numbers

•
$$f_0 = 0$$
; $f_1 = 1$; $f_n = f_{n-1} + f_{n-2}$

Autumn 2012

...

Bounding the Fibonacci Numbers

• Theorem: $2^{n/2-1} \le f_n < 2^n$ for $n \ge 2$

Autumn 2012 CSE 311

Fibonacci numbers and the running time of Euclid's algorithm

- Theorem: Suppose that Euclid's algorithm takes n steps for gcd(a,b) with a>b, then a ≥ f_{n+1}
- Set $r_{n+1}=a$, $r_n=b$ then Euclid's alg. computes

$$r_{n+1} = q_n r_n + r_{n-1}$$

 $r_n = q_{n-1} r_{n-1} + r_{n-2}$

each quotient $q_i \ge 1$ $r_1 \ge 1$

:

 $r_3 = q_2 r_2 + r_1$ $r_2 = q_1 r_1$

Autumn 2012

CSE 311

Recursive Definitions of Sets

- Recursive definition
 - Basis step: 0 ∈ S
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Autumn 2012 CSE 311

Recursive definitions of sets

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$, then $x + y \in S$;

Basis: $[1, 1, 0] \in S$, $[0, 1, 1] \in S$;

Recursive:

 $\begin{array}{l} \text{if } [x,\,y,\,z] \in S, \ \alpha \text{ in } R, \ \text{then } [\alpha \, x,\,\alpha \, y,\,\alpha \, z] \in S \\ \text{if } [x_1,\,y_1,\,z_1], [x_2,\,y_2,\,z_2] \in S \\ \text{then } [x_1+x_2,\,y_1+y_2,\,z_1+z_2] \end{array}$

Powers of 3

Autumn 2012

CSE 311

Strings

- The set Σ^* of strings over the alphabet Σ is defined
 - Basis: $\lambda \in S$ (λ is the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Autumn 2012 CSE 311 15

Function definitions on recursively defined sets

Len(λ) = 0;

Len(wx) = 1 + Len(w); for $w \in \Sigma^*$, $x \in \Sigma$

Concat(w, λ) = w for w $\in \Sigma^*$

Concat(w_1, w_2x) = Concat(w_1, w_2)x for w_1, w_2 in $\Sigma^*, x \in \Sigma$

umn 2012 CSE 311