CSE 311 Foundations of

 Computing ILecture 16
Induction and Recursive Definitions
Autumn 2012

Announcements

- Reading assignments
- Today:
- 5.2, $5.3 \quad 7^{\text {th }}$ Edition
- 4.2, $4.36^{\text {th }}$ Edition
- 3.3, $3.45^{\text {th }}$ Edition
- Midterm Friday, Nov 2
- Closed book, closed notes
- Practice midterm available on the Web
- Cover class material up to and including induction.
- Extra office hours Thursday (midterm review)
- 3:30 pm, Dan Suciu, Gowen 201
- 4:30 pm, Richard Anderson, Gowen 201

Highlights from last lecture

- Mathematical Induction

$P(0)$

$\forall k \geq 0(P(k) \rightarrow P(k+1))$
$\therefore \forall \mathrm{n} \geq 0 \mathrm{P}(\mathrm{n})$

- Induction proof layout:

1. By induction we will show that $P(n)$ is true for every $\mathrm{n} \geq 0$
2. Base Case: Prove P(0)
3. Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{k})$ is true for some arbitrary integer $k \geq 0$
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(k)$ is true
5. Conclusion: Result follows by induction
\qquad CSE 311

Harmonic Numbers

$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$
Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$

Strong Induction English Proofs

1. By induction we will show that $\mathrm{P}(\mathrm{n})$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $\mathrm{k} \geq 0, \mathrm{P}(\mathrm{j})$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction

Every integer ≥ 2 is the product of primes

Recursive Definitions of Functions

- $F(0)=0 ; F(n+1)=F(n)+1 ;$
- $G(0)=1 ; G(n+1)=2 \times G(n) ;$
- $0!=1 ;(n+1)!=(n+1) \times n!$
- $H(0)=1 ; H(n+1)=2^{H(n)}$

Autumn 2012
CSE 311

Fibonacci Numbers

- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$

Fibonacci numbers and the running time of Euclid's algorithm

- Theorem: Suppose that Euclid's algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq f_{n+1}$
- Set $r_{n+1}=a, r_{n}=b$ then Euclid's alg. computes
$r_{n+1}=q_{n} r_{n}+r_{n-1}$
$r_{n}=q_{n-1} r_{n-1}+r_{n-2} \quad$ each quotient $q_{i} \geq 1$ $r_{1} \geq 1$
:
$r_{3}=q_{2} r_{2}+r_{1}$
$r_{2}=q_{1} r_{1}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

Function definitions on recursively defined sets

$\operatorname{Len}(\lambda)=0$;
$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
Concat $\left(\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{x}\right)=\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \mathrm{x}$ for $\mathrm{w}_{1}, \mathrm{w}_{2}$ in $\Sigma^{*}, \mathrm{x} \in \Sigma$

