

Announcements

- Reading assignments
- Today:
- 5.2, $5.3 \quad 7^{\text {th }}$ Edition
- 4.2, $4.36^{\text {th }}$ Edition
- 3.3, $3.45^{\text {th }}$ Edition
- Monday: $5.3\left(7^{\text {th }}\right), 4.3\left(6^{\text {th }}\right), 3.4\left(5^{\text {th }}\right)$
- Midterm next Friday, Nov 2
- Closed book, closed notes
- Practice midterm questions available on the Web
- Extra office hours Thursday (midterm review)
- 3:30 pm, Dan Suciu, Gowen 201
- $4: 30$ pm, Richard Anderson, Gowen 201

Highlights from last lecture

- Shift cipher
$-\mathrm{F}(\mathrm{x})=(\mathrm{x}+\mathrm{c}) \bmod 26 ; \mathrm{F}^{-1}(\mathrm{x})=(\mathrm{x}-\mathrm{c}) \bmod 26$
- Multiplicative cipher
- Suppose $a b \equiv 1(\bmod 26)(i . e, a b \bmod 26=1)$
$-F(x)=\operatorname{ax} \bmod 26 ; F^{-1}(x)=b x \bmod 26$
- Composite cipher
$-F(x)=(a x+c) \bmod 26 ; F^{-1}(x)=(b x-b c) \bmod 26$
- Examples
- $\mathrm{F}(\mathrm{x})=(\mathrm{x}+5) \bmod 26 ; \quad \mathrm{F}^{-1}(\mathrm{x})=(\mathrm{x}-5) \bmod 26$
$-\mathrm{G}(\mathrm{x})=7 \mathrm{x} \bmod 26 ;$ $\mathrm{G}^{-1}(\mathrm{x})=15 \mathrm{x} \bmod 26$
$-H(x)=(7 x+5) \bmod 26 ;$ $H^{-1}(x)=(15 x+3) \bmod 26$

Induction Example

- Prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$
$-n=0$
$-n=1$
$-n=2$
$-n=3$
- ...

\qquad

Induction as a rule of Inference

Domain: integers ≥ 0

$$
\begin{aligned}
& \mathrm{P}(0) \\
& \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))
\end{aligned}
$$

How would we use the induction rule in a formal proof?

```
P(0)
\forallk(P(k)->P(k+1))
.}\forall\textrm{nP
1. Prove \(\mathrm{P}(0)\)
2. Let k be an arbitrary integer \(\geq 0\)
3. Assume that \(P(k)\) is true
4. ...
5. Prove \(P(k+1)\) is true
```

6. $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$

Direct Proof Rule
7. $\forall k(P(k) \rightarrow P(k+1)) \quad$ Intro \forall from 2-6
8. $\forall \mathrm{nP}(\mathrm{n}) \quad$ Induction Rule 1\&7

5 Steps to Inductive Proofs in English

Proof:

1. "By induction we will show that $\mathrm{P}(\mathrm{n})$ is true for every $\mathrm{n} \geq 0$ "
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{k})$ is true for some arbitrary integer $\mathrm{k} \geq 0$ "
4. "Inductive Step:" Want to prove that $\mathrm{P}(\mathrm{k}+1)$ is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)
5. "Conclusion: Result follows by induction"

Autumn 2012 CSE 31

- Prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$

$$
1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2 \text { for all } n \geq 1
$$

Harmonic Numbers

$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$
Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$

Cute Application: Checkerboard Tiling with Trinominos

Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \qquad

Strong Induction

P(0)
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$
Follows from ordinary induction applied to $Q(n)=P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(n)$

Autumn 2012 CSE 311

Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $\mathrm{P}(\mathrm{j})$ is true for all values $\leq k$
5. Conclusion: Result follows by induction
