

Announcements

- Reading assignments
- Today:
- $5.17^{\text {th }}$ Edition
-4.1 $6^{\text {th }}$ Edition
- $3.25^{\text {th }}$ Edition
- Homework 5

Highlight from last lecture:

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Every positive integer greater than 1 has a unique prime factorization

CSE 311

Greatest Common Divisor

- GCD (a, b) : Largest integer d such that $\mathrm{d} \mid \mathrm{a}$ and $d \mid b$
$-\operatorname{GCD}(100,125)=25$
$-\operatorname{GCD}(18,49)=1$
$-\operatorname{GCD}(11,66)=11$
$-\operatorname{GCD}(180,252)=36$

Euclid's Algorithm

- $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\operatorname{GCD}(\mathrm{y}, \mathrm{x} \bmod \mathrm{y})$

Example: GCD $(660,126)$

```
        int GCD(int a, int b){ /* a >= b, b > 0 */
        int tmp;
        int }x=a
    int y=b;
    while (y>0){
        tmp = x % y;
        x = y;
        y = tmp;
    }
    return x;
}
```


Extended Euclid's Algorithm

- If $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\mathrm{g}$, there exist integers s, t, such $s x+t y=g ;$
- The values x, y in Euclid's algorithm are linear sums of a, b.
- A little book keeping can be used to keep track of the constants

Bézout's Theorem

If a and b are positive integers, then there exist integers s and t such that $\operatorname{gcd}(a, b)=s a+t b$.

Autumn 2012

Multiplicative Inverse mod m

Suppose GCD $(\mathrm{a}, \mathrm{m})=1$

By Bézoit's Theorem, there exist integers s and t such that $\mathrm{sa}+\mathrm{tm}=1$.
s is the multiplicative inverse of a :

$$
1=(\mathrm{sa}+\mathrm{tm}) \bmod m=s a \bmod m
$$

Solve $7 x \bmod 26=1$

Induction Example

- Want to prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$
$-n=0$
- $n=1$
-n=2
$-n=3$
- ...

Autumn 2012

How would we use the induction rule in a formal proof?

```
P(0)
\forallk(P(k)->P(k+1))
.}\forall\textrm{n}P(\textrm{n}
```

1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true
4. ...
5. Prove $P(k+1)$ is true
6. $P(k) \rightarrow P(k+1) \quad$ Direct Proof Rule
7. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro \forall from 2-6
8. $\forall \mathrm{nP}(\mathrm{n}) \quad$ Induction Rule 1\&7

Autumn 2012

How would we use the induction rule in a formal proof?

```
P(0)
\forallk(P(k)->P(k+1))
\therefore }\forall\textrm{nP}(\textrm{n}
```

1. Prove $\mathrm{P}(0)$ Base Case
2. Let k be an arbitrary integer ≥ 0 Inductive
3. Assume that $P(k)$ is true Hypothesis
4. ${ }^{\text {5. }}$ Prove $P(k+1)$ is true Inductive Step
5. $P(k) \rightarrow P(k+1)$ Direct Proot Rule
6. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro \forall from 2-6
7. $\forall \mathrm{nP}(\mathrm{n}) \quad$ Induction Rule 1\&7

Conclusion
16

5 Steps to Inductive Proofs in English
Proof:

1. "By induction we will show that $P(n)$ is true for every $n \geq 0$ "
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis: Assume that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0$ "
4. "Inductive Step:" Want to prove that $\mathrm{P}(\mathrm{k}+1)$ is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)!$)
5. "Conclusion: Result follows by induction"

Induction Example

- Want to prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$

$1+2+4+\ldots+2^{n}=2^{n+1}-1$ for all $n \geq 0$

Harmonic Numbers
$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$
Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$
$1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2$ for all $n \geq 1$

Cute Application: Checkerboard

 Tiling with TrinominosProve that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \qquad

