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Announcements 

• Reading assignments 

– Today and Friday:  

• 4.1-4.3                              7th Edition 

• 3.5, 3.6       6th Edition 

• 2.5, 2.6 up to p. 191     5th Edition 

• Homework 4 

– Available now 
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Highlights from last lecture:  
Set Theory 
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x  A :    “x is an element of A” 
x  A :     (x  A) 

A = B    x (x  A  x  B) 

𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵  

A  B = { x | (x  A)  (x  B) } 

Applications of Set Theory 

• Implementation:  Characteristic Vector 

• Private Key Cryptography 

• Unix File Permissions 
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Russell’s Paradox 

S = { x | x  x } / 
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Functions review 

• A function from A to B  

• an assignment of exactly one element of B 
to each element of A.  

• We write f: A→B. 

• “Image of a” = f(a) 

• Domain of f : A 

• Range of f = set of all images of elements of A 
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Image, Preimage 
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Is this a function? one-to-one? onto? 
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Number Theory (and applications 
to computing) 

• Branch of Mathematics with direct relevance 
to computing 

• Many significant applications 

– Cryptography 

– Hashing 

– Security 

• Important tool set 

Modular Arithmetic 

• Arithmetic over a finite domain 

• In computing, almost all computations are 
over a finite domain 

What are the values computed? 

 public void Test1() { 

            byte x = 250; 

            byte y = 20; 

            byte z = (byte) (x + y); 

            Console.WriteLine(z); 

 }  

 public void Test2() { 

            sbyte x = 120; 

            sbyte y = 20; 

            sbyte z = (sbyte) (x + y); 

            Console.WriteLine(z); 

 }  
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Arithmetic mod 7 

• a +7 b = (a + b) mod 7 

• a 7 b = (a  b) mod 7 
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Divisibility 
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Integers a, b, with a ≠ 0, we say that a divides b is 

there is an integer k such that b = ak.  The notation   

a | b denotes a divides b. 

Division Theorem 
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Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = dq + r. 

q = a div d            r = a mod d 

Note: r ≥ 0 even if a < 0.  Not quite the same as a%d   

Modular Arithmetic 
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Let a and b be integers, and m be a positive integer.  

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m. 

Modular arithmetic 
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Let a and b be integers, and let m be a positive 

integer.  Then a ≡ b (mod m) if and only if  

a mod m = b mod m. 

Modular arithmetic 
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Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then 

• a + c ≡ b + d (mod m)    and       

• ac ≡ bd (mod m) 



Example 
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Let n be an integer, prove that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4) 

n-bit Unsigned Integer Representation 

• Represent integer x as sum of powers of 2: 

    If  x = i=0  bi 2
i where each bi ∈ {0,1} 

    then representation is bn-1...b2 b1 b0 
 

    99 = 64 + 32 + 2 + 1 
    18 = 16 + 2 

 
• For n = 8: 
     99:     0110  0011 
     18:    0001  0010 
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n-1 

Signed integer representation 
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n-bit signed integers 

Suppose -2n-1 < x < 2n-1 

First bit as the sign, n-1 bits for the value 
 

99 = 64 + 32 + 2 + 1 

18 = 16 + 2 

 

For n = 8: 

99:     0110  0011 

-18:   1001  0010 

 

Any problems with this representation? 

Two’s complement representation 
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n bit signed integers,  first bit will still be the sign bit 

Suppose 0 ≤ x < 2n-1,  x is represented by the binary representation of x 

Suppose 0 < x ≤ 2n-1,  -x is represented by the binary representation of 2n-x 

 

  
 

 

99 = 64 + 32 + 2 + 1 

18 = 16 + 2 

 

For n = 8: 

 99:    0110 0011 

-18:    1110 1110 

 

 

Key property: Two’s complement representation of any number y  

                       is equivalent to y mod 2n so arithmetic works mod 2n 

Signed vs Two’s complement 
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-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 

Signed 

Two’s complement 

Two’s complement representation 

• Suppose 0 < x ≤ 2n-1,  -x is represented by the 
binary representation of 2n-x 

 

• To compute this:  Flip the bits of x then add 1: 

– All 1’s string is 2n-1 so 

• Flip the bits of x   replace x by  2n-1-x 
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