

Announcements

- Reading assignments
- Today and Friday:
- 4.1-4.3 $\quad 7^{\text {th }}$ Edition
- 3.5, $3.66^{\text {th }}$ Edition
- 2.5, 2.6 up to $\mathrm{p} .1915^{\text {th }}$ Edition
- Homework 4
- Available now

Highlights from last lecture:
Set Theory
$x \in \mathrm{~A}:$ " x is an element of $\mathrm{A} "$ $x \in \mathrm{~A}: \quad \neg(x \in \mathrm{~A})$ $\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})$ $(A \subseteq B \wedge B \subseteq A) \rightarrow A=B$ $\mathrm{~A} \cup \mathrm{~B}=\{x \mid(x \in \mathrm{~A}) \vee(x \in \mathrm{~B})\}$

Applications of Set Theory

- Implementation: Characteristic Vector
- Private Key Cryptography
- Unix File Permissions

Autumn 2012
CSE 311

$$
\begin{aligned}
& \text { Russell's Paradox } \\
& \mathrm{S}=\{x \mid x \notin x\}
\end{aligned}
$$

Is this a function? one-to-one? onto?

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

What are the values computed?

Autumn 2011
CSE 311
Autumn 201

Arithmetic mod 7

- $a+{ }_{7} b=(a+b) \bmod 7$
- $a \times_{7} b=(a \times b) \bmod 7$

Divisibility

Integers a, b, with $a \neq 0$, we say that a divides b is there is an integer k such that $b=a k$. The notation $a \mid b$ denotes a divides b.

Modular Arithmetic

Let a and b be integers, and m be a positive integer.
We say a is congruent to b modulo m if m divides $\mathrm{a}-\mathrm{b}$. We use the notation $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ to indicate that a is congruent to b modulo m .

Division Theorem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.
$q=a \operatorname{div} d \quad r=a \bmod d$

Note: $r \geq 0$ even if $a<0$. Not quite the same as a
Autumn 2011
CSE 311

Modular arithmetic

Let a and b be integers, and let m be a positive integer. Then $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.

Modular arithmetic

Let m be a positive integer. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ and $c \equiv d(\bmod m)$, then

- $a+c \equiv b+d(\bmod m)$ and
- $\mathrm{ac} \equiv \mathrm{bd}(\bmod m)$

Signed integer representation
n-bit signed integers Suppose $-2^{n-1}<x<2^{n-1}$ First bit as the sign, $n-1$ bits for the value $99=64+32+2+1$ $18=16+2$ For $n=8:$ $99: 0110$ -18: 1001011 Any problems with this representation? Autumn2012

Signed vs Two's complement

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 : If $x=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} b_{i} 2^{i}$ where each $b_{i} \in\{0,1\}$ then representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
$99=64+32+2+1$
$18=16+2$
- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Autumn 2012
CSE 311
20

Two's complement representation

n bit signed integers, first bit will still be the sign bit
Suppose $0 \leq x<2^{n-1}$, x is represented by the binary representation of x Suppose $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$

Key property: Two' s complement representation of any number y is equivalent to $y \bmod 2^{n}$ so arithmetic works $\bmod 2^{n}$
$99=64+32+2+1$
$18=16+2$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110

Autumn 2012
CSE 311

Two's complement representation

- Suppose $0<x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^{n}-x$
- To compute this: Flip the bits of x then add 1:
- All 1 's string is $2^{n}-1$ so
- Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$

