CSE 311 Foundations of Computing I

Lecture 11 Modular Arithmetic Autumn 2012

Autumn 2012 CSE 311

Announcements

- · Reading assignments
 - Today and Friday:

• 4.1-4.3 7th Edition • 3.5, 3.6 6th Edition • 2.5, 2.6 up to p. 191 5th Edition

- Homework 4
 - Available now

Autumn 2012 CSE 311

Highlights from last lecture: Set Theory

 $x \in A$: "x is an element of A" $x \in A$: $\neg (x \in A)$

 $A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$

 $(A \subseteq B \land B \subseteq A) \rightarrow A = B$

 $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$

utumn 2012 CSE

Applications of Set Theory

- Implementation: Characteristic Vector
- Private Key Cryptography
- Unix File Permissions

utumn 2012 CSE 311

Russell's Paradox

$$S = \{ x \mid x \notin x \}$$

CSE 311

• Range of f

Functions review

- A function from A to B
 - an assignment of exactly one element of *B* to each element of *A*.
 - We write $f: A \rightarrow B$.
 - "Image of a'' = f(a)
- *Domain* of *f* : A
- Range of f = set of all images of elements of A

Autumn 2012 CSE 311 6

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

What are the values computed?

```
public void Test1() {
    byte x = 250;
    byte y = 20;
    byte z = (byte) (x + y);
    Console.WriteLine(z);
}

public void Test2() {
    sbyte x = 120;
    sbyte y = 20;
    sbyte z = (sbyte) (x + y);
    Console.WriteLine(z);
}
```


Arithmetic mod 7

- $a +_7 b = (a + b) \mod 7$
- $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

х	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Divisibility

Integers a, b, with $a \neq 0$, we say that a *divides* b is there is an integer k such that b = ak. The notation $a \mid b$ denotes a divides b.

nn 2011 CSE 311

Division Theorem

Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with $0 \le r < d$, such that a = dq + r.

 $q = a \operatorname{div} d$

 $r = a \mod d$

MAR OFFICE AND THE STATE OF THE

Note: $r \ge 0$ even if a < 0. Not quite the same as $a \ d$

mn 2011 CSE

Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a *is congruent to b modulo m* if m divides a-b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Autumn 2011

CSE 311

Modular arithmetic

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

Autumn 2011

311

Modular arithmetic

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $a + c \equiv b + d \pmod{m}$ and
- ac ≡ bd (mod m)

2011

CSE 311

Example

Let n be an integer, prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Autumn 2011

CSE 311

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2: If $x = \sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$ then representation is $b_{n-1}...b_2 b_1 b_0$

99 = 64 + 32 + 2 + 118 = 16 + 2

• For n = 8: 99: 0110 0011 18: 0001 0010

Autumn 2012

CSE 311

Signed integer representation

n-bit signed integers Suppose -2ⁿ⁻¹ < $x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 118 = 16 + 2

For n = 8: 99: 0110 0011 -18: 1001 0010

Any problems with this representation?

Autumn 2012

CSE 311

Two's complement representation

n bit signed integers, first bit will still be the sign bit Suppose $0 \le x \le 2^{n-1}$, x is represented by the binary representation of x Suppose $0 \le x \le 2^{n-1}$, x is represented by the binary representation of 2^{n} -x

Key property: Two's complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

99 = 64 + 32 + 2 + 118 = 16 + 2

For n = 8: 99: 0110 0011 -18: 1110 1110

nn 2012 CSE 311

Signed vs Two's complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

Signed

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's complement

Autumn 2012 CSE 311 23

Two's complement representation

- Suppose $0 < x \le 2^{n-1}$, -x is represented by the binary representation of 2^n-x
- To compute this: Flip the bits of x then add 1:
 - All 1's string is 2n-1 so
 - Flip the bits of $x = \text{replace } x \text{ by } 2^{n}-1-x$

mn 2012

CSE 311 24