

Set Theory

- Formal treatment dates from late $19^{\text {th }}$ century
- Direct ties between set theory and logic
- Important foundational language

Announcements

- Reading assignments
- Wednesday:
- 4.1-4.2 $7^{\text {th }}$ Edition
- 3.4, 3.6 up to $p .2276^{\text {th }}$ Edition
- 2.4, 2.5 up to $\mathrm{p} .1775^{\text {th }}$ Edition
- Homework 4
- Coming soon...

Definition: A set is an unordered collection of objects

$x \in \mathrm{~A}: \quad$ " x is an element of $\mathrm{A} "$
" x is a member of A "
" x is in A"
$x \notin \mathrm{~A}: \quad \neg(x \in \mathrm{~A})$

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Empty Set and Power Set

- Empty set \emptyset does not contain any elements
- Power set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

Cartesian Product : $\mathrm{A} \times \mathrm{B}$

$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$

Autumn 2012

It's Boolean algebra again

- Definition for U based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

Set operations

$\mathrm{A} \cup \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \vee(x \in \mathrm{~B})\} \quad$ union
$A \cap B=\{x \mid(x \in A) \wedge(x \in B)\} \quad$ intersection
$A-B=\{x \mid(x \in A) \wedge(x \notin B)\} \quad$ set difference
$\mathrm{A} \oplus \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \oplus(x \in \mathrm{~B})\} \quad \begin{aligned} & \text { symmetric } \\ & \text { difference }\end{aligned}$
$\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\}$ complement
(with respect to universe U)

Distributive Laws

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Autumn 2012
CSE 311

A simple identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
-What if x and y are bit-vectors?

Autumn 2012
CSE 311

One-time pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $C=m \oplus K$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Autumn 2012
CSE 311

Unix/Linux file permissions

- ls -1
drwxr-xr-x ... Documents/
-rw-r--r-- ... file1
- Permissions maintained as bit vectors
- Letter means bit is 1 - means bit is 0 .

Functions review

- A function from A to B
- an assignment of exactly one element of B to each element of A.
- We write $f: A \rightarrow B$.
- "Image of a " = $f(a)$
- Domain of f : A
- Range of $f=$ set of all images of elements of A

Is this a function? one-to-one? onto?

Autumn 2012
Is this a function? one-to-one? onto?

Image, Preimage
A B

(b)

3
$\rightarrow 4$
(e)

Autumn 2012
CSE 311

