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Announcements

* Reading assighments
— Logical Inference

e 16,1.7 7th Edition
15,16 6t Edition
1.5 3.1 5th Edition

* Homework
— HW 1 returned
— Turn in HW2 Now!
— HW3 available



Highlights from last lecture

* Predicate calculus, intricacies of V, 3
* Introduction to inference
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Proofs

e Start with hypotheses and facts
* Use rules of inference to extend set of facts
* Result is proved when it is included in the set
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An inference rule: Modus Ponens

If p and p—q are both true then g must be true

Werite this rule as P, P—=(Q
P

Given:

— If it is Wednesday then you have 311 homework due
today.

— It is Wednesday.

Therefore, by Modus Ponens:
— You have 311 homework due today.



Proofs

* Show that r follows from p, p—q, and g—r

1. p Given
2. p—q Given
3. q—r Given
4. ¢ Modus Ponens from 1 and 2
5. r Modus Ponens from 3 and 4



Inference Rules

* Each inference rule is written as A, B
which means that if both A .- CD
and B are true then you can infer C and you can
infer D.

— For rule to be correct (AAB)—C and (AAB)—D
must be a tautologies

* Sometimes rules don’ t need anything to start
with. These rules are called axioms:

— e.g. Excluded Middle Axiom
. pVv-p



Simple Propositional Inference
Rules

e Excluded middle plus two inference rules per binary
connective, one to eliminate it and one to introduce it

PA( P, g
P, q . pAqg o pvp
pvdqg,—-p . P
. Q .pVvQ
P, P—>Q Direct Proof Rule
q Not like other rules!

See next slide...



Direct Proof of an Implication

* p=>q denotes a proof of q given p as an
assumption. Don’t confuse with p—q.
 The direct proof rule

— if you have such a proof then you can conclude
that p—q is true

e E.g. Let’s provep —(p Vv q)
1. p Assumption
2. pvg Introforvfroml

3. p—(pvaq) Directproofrule

Proof subroutine
forp=(pvq)
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Example

* Prove ((p—q)A(g—r))—=(p—r)



Proofs can use Equivalences too

Show that —p follows from p—q and —q

P—(q Given
- Given
-g — —=p Contrapositive of 1 (Equivalence!)

s w N e

- p Modus Ponens from 2 and 3



Inference Rules for Quantifiers

P(c) for some ¢ Y x P(x)
.+ Jdx P(x) .. P(a) forany a
“Let a be anything*”...P(a) dx P(x)
.« Vx P(x) .". P(c) for some special c

*in the domain of P



Proofs using Quantifiers

“There exists an even prime number”

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly
between 1 and x



Even(x) = dy (x=2y)
Even and Odd 0dd(x) = Iy (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even”
Formal proof of: Vx (Even(x)—Even(x?))



Even(x) = dy (x=2y)
Even and Odd 0dd(x) = Iy (x=2y+1)

Domain: Integers

Prove: “The square of every odd number is odd”
English proof of: Vx (Odd(x)—=0dd(x?))

Let x be an odd number.
Then x=2k+1 for some integer k (depending on x)
Therefore x?=(2k+1)?= 4k?+4k+1=2(2k?+2k)+1.

Since 2k?+2k is an integer, x? is odd.



“Proof by Contradiction:
One way to prove —p

If we assume p and derive False (a contradiction)
then we have proved —p.

1. p Assumption
3. F
4. p— F Direct Proof rule

5. =pvF Equivalence from 4
6. —p Equivalence from 5



Even(x) = dy (x=2y)
Even and Odd 0dd(x) = Iy (x=2y+1)

Domain: Integers

Prove: “No number is both even and odd”
English proof: = dx (Even(x)A0Odd(x))
=Vx = (Even(x)A0dd(x))

Let x be any integer and suppose that it is both even
and odd. Then x=2k for some integer k and x=2n+1 for
some integer n. Therefore 2k=2n+1 and hence k=n+.

But two integers cannot differ by % so this is a
contradiction.



Rational Numbers

 Areal number x is rational iff there exist
integers p and q with g=0 such that x=p/q.

Rational(x) = dp dq ((x=p/q)AlInteger(p) Alnteger(g) Aq=0)
* Prove:
— If x and y are rational then xy is rational

Vx Vy ((Rational(x)ARational(y))—Rational(xy))

Domain: Real numbers



Rational Numbers

* Areal number x is rational iff there exist
integers p and q with g=0 such that x=p/q.
Rational(x) = dp dq ((x=p/q)AlInteger(p) Alnteger(g) Aq=0)

* Prove:

— If x and y are rational then xy is rational
— If x and y are rational then x+y is rational



Rational Numbers

 Areal number x is rational iff there exist
integers p and q with g=0 such that x=p/q.

Rational(x) = dp dq ((x=p/q)AlInteger(p) Alnteger(g) Aq=0)

* Prove:
— If x and y are rationa
— If x and y are rationa
— If x and y are rationa

nen Xy is rational

nen x+y is rational

nen x/y is rational



Counterexamples

* To disprove Yx P(x) find a counterexample
— some c such that = P(c)

— works because this implies dx =P(x) which is
equivalent to = Vx P(x)



Proofs

* Formal proofs follow simple well-defined rules
and should be easy to check
— In the same way that code should be easy to execute

* English proofs correspond to those rules but are
designed to be easier for humans to read
— Easily checkable in principle

* Simple proof strategies already do a lot

— Later we will cover a specific strategy that applies to
loops and recursion (mathematical induction)



