CSE 311 Foundations of Computing I

Lecture 8

Proofs

Autumn 2012

Announcements

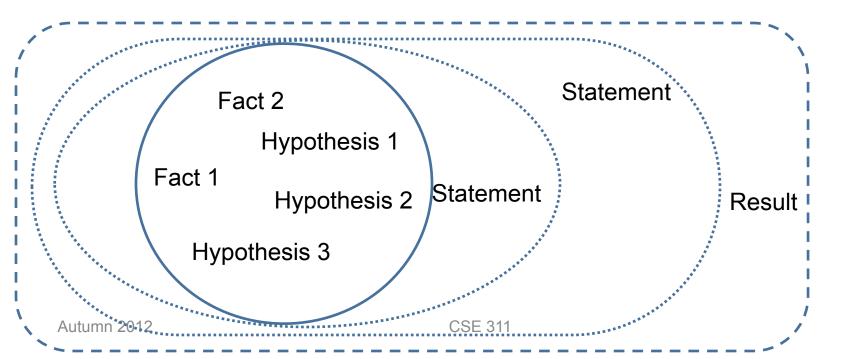
- Reading assignments
 - Logical Inference
 - 1.6, 1.7 7th Edition
 - 1.5, 1.6 6th Edition
 - 1.5, 3.1 5th Edition
- Homework
 - HW 1 returned
 - Turn in HW2 Now!
 - HW3 available

Highlights from last lecture

- Predicate calculus, intricacies of ∀, ∃
- Introduction to inference

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set



An inference rule: *Modus Ponens*

If p and p→q are both true then q must be true

• Write this rule as $p, p \rightarrow q$

- Given:
 - If it is Wednesday then you have 311 homework due today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have 311 homework due today.

Proofs

• Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

- 1. p Given
- 2. p→q Given
- 3. $q \rightarrow r$ Given
- 4. q Modus Ponens from 1 and 2
- 5. r Modus Ponens from 3 and 4

Inference Rules

- Each *inference rule* is written as which means that if both A and B are true then you can infer C and you can infer D.
 - For rule to be correct (A ∧ B) → C and (A ∧ B) → D
 must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

Simple Propositional Inference Rules

• Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

$$\begin{array}{c}
p \Rightarrow q \\
\vdots \quad p \rightarrow q
\end{array}$$

Direct Proof Rule Not like other rules! See next slide...

Direct Proof of an Implication

- p⇒q denotes a proof of q given p as an assumption. Don't confuse with $p \rightarrow q$.
- The direct proof rule
 - if you have such a proof then you can conclude that $p \rightarrow q$ is true
- E.g. Let's prove $p \rightarrow (p \lor q)$

 - p Assumption
 p v q Intro for v from 1
 - $p \rightarrow (p \lor q)$ Direct proof rule

Proof subroutine for $p \Rightarrow (p \lor q)$

Example

• Prove $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Proofs can use Equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

- 1. p→q Given
- 2. ¬q Given
- 3. $\neg q \rightarrow \neg p$ Contrapositive of 1 (Equivalence!)
- 4. ¬p Modus Ponens from 2 and 3

Inference Rules for Quantifiers

$$P(c)$$
 for some c
 $\exists x P(x)$

$$\forall x P(x)$$
P(a) for any a

$$\exists x P(x)$$
•• P(c) for some special c

* in the domain of P

Proofs using Quantifiers

"There exists an even prime number"

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

Even and Odd

```
Even(x) \equiv Jy (x=2y)
Odd(x) \equiv Jy (x=2y+1)
Domain: Integers
```

Prove: "The square of every even number is even"

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even and Odd

Even(x)
$$\equiv \exists y \ (x=2y)$$

Odd(x) $\equiv \exists y \ (x=2y+1)$
Domain: Integers

Prove: "The square of every odd number is odd"

English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore $x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.

Since $2k^2+2k$ is an integer, x^2 is odd.

"Proof by Contradiction": One way to prove ¬p

If we assume p and derive False (a contradiction) then we have proved $\neg p$.

1. p Assumption

• • •

3. **F**

4. $p \rightarrow F$ Direct Proof rule

5. ¬p v **F** Equivalence from 4

6. ¬p Equivalence from 5

Even and Odd

Even(x)
$$\equiv \mathbf{J}y$$
 (x=2y)
Odd(x) $\equiv \mathbf{J}y$ (x=2y+1)
Domain: Integers

Prove: "No number is both even and odd"

English proof: $\neg \exists x (Even(x) \land Odd(x))$

 $\equiv \forall x \neg (Even(x) \land Odd(x))$

Let x be any integer and suppose that it is both even and odd. Then x=2k for some integer k and x=2n+1 for some integer n. Therefore 2k=2n+1 and hence $k=n+\frac{1}{2}$.

But two integers cannot differ by ½ so this is a contradiction.

Rational Numbers

 A real number x is rational iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

- Prove:
 - If x and y are rational then xy is rational

 $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Domain: Real numbers

Rational Numbers

 A real number x is rational iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

- Prove:
 - If x and y are rational then xy is rational
 - If x and y are rational then x+y is rational

Rational Numbers

 A real number x is rational iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Prove:

- If x and y are rational then xy is rational
- If x and y are rational then x+y is rational
- If x and y are rational then x/y is rational

Counterexamples

- To disprove $\forall x P(x)$ find a counterexample
 - some c such that $\neg P(c)$
 - works because this implies $\exists x \neg P(x)$ which is equivalent to $\neg \forall x P(x)$

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)