

Announcements

- Reading assignments
- Logical Inference
- 1.6, $1.7 \quad 7^{\text {th }}$ Edition
- 1.5, 1.6, $1.76^{\text {th }}$ Edition
- 1.5, 3.1 $5^{\text {th }}$ Edition

Scope of Quantifiers

- Notlargest $(x) \equiv \exists y \operatorname{Greater}(y, x)$

$$
\equiv \exists z \text { Greater }(z, x)
$$

- Value doesn't depend on y or z "bound variables"
- Value does depend on x "free variable"
- Quantifiers only act on free variables of the formula they quantify
$-\forall x(\exists y(P(x, y) \rightarrow \forall x Q(y, x)))$

Autumn 2012
CSE 311

Scope of Quantifiers

- $\exists x(\mathrm{P}(x) \wedge \mathrm{Q}(x))$ vs $\exists x \mathrm{P}(x) \wedge \exists x \mathrm{Q}(x)$

Nested Quantifiers

- Bound variable name doesn't matter
- $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$
- Positions of quantifiers can change
$-\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))$
- BUT: Order is important...

Quantification with two variables		
Expression When true $\forall x \forall y P(x, y)$ When false $\exists x \exists y P(x, y)$ $\forall x \exists y P(x, y)$ $\exists y \forall x P(x, y)$		

Negations of Quantifiers

- Not every positive integer is prime
- Some positive integer is not prime
- Prime numbers do not exist
- Every positive integer is not prime

Autumn 2012
CSE 311

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \hline
\end{aligned}
$$

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \hline
\end{aligned}
$$

"There is no largest integer"

$$
\begin{aligned}
& \neg \exists \mathrm{x} \forall \mathrm{y} \quad(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \neg \forall \mathrm{y} \quad(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y} \quad(\mathrm{y}>\mathrm{x})
\end{aligned}
$$

"For every integer there is a larger integer"

Logical Inference

- So far we' ve considered
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is a small part of this

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- AI
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Proofs

- Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

1. p Given
2. $p \rightarrow q$ Given
3. $q \rightarrow r$ Given
4. q Modus Ponens from 1 and 2
5. r Modus Ponens from 3 and 4

An inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as $\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$
- Given:
- If it is Monday then you have a 311 class today.
- It is Monday.
- Therefore, by Modus Ponens:
- You have a 311 class today

Autumn 2012
CSE 311

Inference Rules

- Each inference rule is written as $\quad \mathrm{A}, \mathrm{B}$ which means that if both A

$$
\therefore C, D
$$ and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \wedge B) \rightarrow C$ and $(A \wedge B) \rightarrow D$ must be a tautologies
- Sometimes rules don' t need anything to start with. These rules are called axioms:
- e.g. Excluded Middle Axiom

$$
\therefore p \vee \neg p
$$

Direct Proof of an Implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption. Don't confuse with $p \rightarrow q$.
- The direct proof rule
- if you have such a proof then you can conclude
that $p \rightarrow q$ is true
Proof subroutine
- E.g.

1.	p	Assumption
2.	$\mathrm{p} \vee \mathrm{p} \Rightarrow(\mathrm{p} \vee \mathrm{q})$	
Intro for \vee from 1		

3. $p \rightarrow(p \vee q)$ Direct proof rule

Proofs can use Equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1. $p \rightarrow q$ Given
2. $\neg q \quad$ Given
3. $\neg q \rightarrow \neg p \quad$ Contrapositive of 1
4. $\neg \mathrm{p} \quad$ Modus Ponens from 2 and 3

Proofs using Quantifiers

- Show that "Simba is a cat" follows from "All lions are cats" and "Simba is a lion" (using the domain of all animals)

CSE 311

Inference Rules for Quantifiers
P(c) for some c $\quad \forall x P(x)$
$\therefore \exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{a})$ for any a
"Let a be anything"...P(a)
$\therefore \forall \mathrm{xP}(\mathrm{x})$
$\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special c

Autumn 2012

Proofs using Quantifiers

- "There exists an even prime number"

General Proof Strategy

A. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
B. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do A.
C. Write the proof beginning with B followed by A.

