CSE 311 Foundations of Computing I

Lecture 6 **Predicate Calculus** Autumn 2012

CSE 311

Announcements

- · Reading assignments
 - Predicates and Quantifiers
 - 1.4, 1.5 7th Edition
 - 1.3, 1.4 5th and 6th Edition

Autumn 2012

CSE 311

Predicate Calculus

- Predicate or Propositional Function
 - A function that returns a truth value
- "x is a cat"
- "x is prime"
- "student x has taken course y"
- "x > y"
- "x + y = z" or Sum(x, y, z)

NOTE: We will only use predicates with variables or constants as arguments.

Quantifiers

- $\forall x P(x) : P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which P(x) is true

Statements with quantifiers

- $\exists x \text{ Even}(x)$
- $\forall x \operatorname{Odd}(x)$
- $\forall x (Even(x) \lor Odd(x))$
- $\exists x (Even(x) \land Odd(x))$
- $\forall x \text{ Greater}(x+1, x)$
- $\exists x (Even(x) \land Prime(x))$

CSE 311

Domain: Positive Integers

Even(x) Odd(x)Prime(x) Greater(x,y) Equal(x,y) Statements with quantifiers Domain: Positive Integers

- $\forall x \exists y \text{ Greater } (y, x)$
- $\forall x \exists y \text{ Greater } (x, y)$
- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x))$
- $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

Autumn 2012

CSE 311

Even(x)

Odd(x)
Prime(x)
Greater(x,y)
Equal(x,y)
Sum(x,y,z)

Statements with quantifiers

"There is an odd prime"

Prime(x) Greater(x,y) Sum(x,y,z)

- "If x is greater than two, x is not an even prime"
- $\forall x \forall y \forall z ((Sum(x, y, z) \land Odd(x) \land Odd(y)) \rightarrow Even(z))$
- "There exists an odd integer that is the sum of two primes"

CSE 311

English to Predicate Calculus

"Red cats like tofu"

Cat(x) Red(x)

CSE 311

Goldbach's Conjecture

• Every even integer greater than two can be expressed as the sum of two primes

Prime(x) Greater(x,y) Equal(x,y)

Positive Integers

Scope of Quantifiers

- Notlargest(x) $\equiv \exists y \text{ Greater } (y, x)$ $\equiv \exists z \text{ Greater } (z, x)$
 - Value doesn't depend on y or z "bound variables"
 - Value does depend on x "free variable"
- Quantifiers only act on free variables of the formula they quantify

 $- \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$

Scope of Quantifiers

• $\exists x \ (P(x) \land Q(x))$ vs $\exists x \ P(x) \land \exists x \ Q(x)$

Nested Quantifiers

- · Bound variable name doesn't matter $- \forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$
- · Positions of quantifiers can change $- \ \forall \ x \ (Q(x) \land \exists \ y \ P(x, \, y)) \equiv \ \forall \ x \ \exists \ y \ (Q(x) \land P(x, \, y))$
- BUT: Order is important...

CSE 311

Quantification with two variables

Expression	When true	When false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
/ . (, //		
∀ x ∃ y P(x, y)		
$\exists y \forall x P(x, y)$		
utumn 2012	CSE 311	13

Negations of Quantifiers

- Not every positive integer is prime
- Some positive integer is not prime
- Prime numbers do not exist
- Every positive integer is not prime

utumn 2012

CSE 311

De Morgan's Laws for Quantifiers

$$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$$

Autumn 2012

De Morgan's Laws for Quantifiers

$$\neg \forall x \ P(x) \equiv \exists x \neg P(x)$$

 $\neg \exists x \ P(x) \equiv \forall x \neg P(x)$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (y > x)$$

"For every integer there is a larger integer"

2012 CSE 311