

## Announcements

- Reading assignments
- Boolean Algebra
- 12.1-12.3 $7^{\text {th }}$ Edition
-11.1-11.3 $6^{\text {th }}$ Edition
- 10.1-10.3 $5^{\text {th }}$ Edition
- Predicates and Quantifiers
- $1.47^{\text {th }}$ Edition
- $1.35^{\text {th }}$ and $6^{\text {th }}$ Edition

CSE 311

## Boolean logic

- Combinational logic
- output ${ }_{t}=F$ (input $_{t}$ )
- Sequential logic
- output $=$ F(output $t_{t-1}$, input ${ }_{t}$ )
- output dependent on history
- concept of a time step (clock)
- An algebraic structure consists of
- a set of elements $B=\{0,1\}$
- binary operations $\{+, \bullet\}$ (OR, AND)
- and a unary operation \{'\} (NOT)


## A quick combinational logic example

- Calendar subsystem: number of days in a month (to control watch display)
- used in controlling the display of a wrist-watch LCD screen
- inputs: month, leap year flag
- outputs: number of days


## Implementation in software

```
integer number_of_days ( month, leap_year_flag) {
    switch (month) {
        case 1: return (31);
        case 2: if (leap_year_flag == 1) then
            return (29) else return (28);
            case 3: return (31);
            case 12: return (31);
            default: return (0);
    }
}
```

| Implementation as a binational digital system |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - binary number for month | 0000 |  | d2 | d2 | - | d31 |
| - four wires for 28, 29, 30, and 31 | 0001 | - | 0 | 0 | 0 | 1 |
|  | 0010 | 0 | 1 | 0 | 0 | 0 |
|  | 0010 | 1 | 0 | 1 | 0 | 0 |
|  | 0011 | - | 0 | 0 | 0 | 1 |
| month leap | 0100 | - | 0 | 0 | 1 | 0 |
| $1 \\|^{1}$ | 0101 | - | 0 | 0 | 0 | 1 |
| $\downarrow \downarrow . \downarrow$. | 0110 0111 | - | 0 | 0 | 1 | 0 |
|  | 1000 | - | 0 | 0 | 0 | 1 |
|  | 1001 | - | 0 | 0 | 1 | 0 |
|  | 1010 | - | 0 | 0 | 0 | 1 |
| $1$ | 1011 | - | 0 | 0 | 1 | 0 |
|  | 1100 | - | - | 0 | 0 | $\underline{1}$ |
| d28 d29 d30 d31 | 1110 | - | - | - | - | - |
|  | 1111 | - | - | - | - | - |
| Autumn 2012 CSE 311 |  |  |  |  |  |  |

## Combinational example (cont.)

- Truth-table to logic to switches to gates
- d28 = " 1 when month=0010 and leap=0"
$-\mathrm{d} 28=\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1^{\prime} \cdot{ }^{-}$leap ${ }^{\prime}$
$-\mathrm{d} 31=$ " 1 when month=0001 or month=0011 or $\ldots$.. month $=1100$ "
- d31 $=\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2^{\prime} \cdot m 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+.$. ( $\mathrm{m} 8 \bullet \mathrm{~m} 4 \bullet \mathrm{~m} 2^{\prime} \cdot \mathrm{m} 1^{\prime}$ )
- d31 = can we simplify more?

| month | leap | d28 d29 |  |  |  |  | d30 | d31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 0000 | - | - | - | - |  |  |  |  |
| 0001 | - | 0 | 0 | 0 | 1 |  |  |  |
| 0010 | 0 | 1 | 0 | 0 | 0 |  |  |  |
| 0010 | 1 | 0 | 1 | 0 | 0 |  |  |  |
| 0011 | - | 0 | 0 | 0 | 1 |  |  |  |
| 0100 | - | 0 | 0 | 1 | 0 |  |  |  |
| $\cdots 1100$ | - | 0 | 0 | 0 | 1 |  |  |  |
| 1101 | - | - | - | - | - |  |  |  |
| $111-$ | - | - | - | - | - |  |  |  |
| CSE 311 |  |  |  |  |  |  |  |  |

## Combinational example (cont.)

```
d28 = m8'•m4'•m2•m1'•leap 
```

$\mathrm{d} 29=\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 ' \cdot \mathrm{~m} 2 \cdot \mathrm{~m} 1^{\prime} \cdot$ leap
$\mathrm{d} 30=\left(\mathrm{m} 8^{\prime} \bullet \mathrm{m} 4 \bullet \mathrm{~m} 2^{\prime} \bullet \mathrm{m} 1^{\prime}\right)+\left(\mathrm{m} 8^{\prime} \bullet \mathrm{m} 4 \bullet \mathrm{~m} 2 \bullet \mathrm{~m} 1^{\prime}\right)+$ $\left(\mathrm{m} 8 \bullet \mathrm{~m} 4^{\prime} \cdot \mathrm{m} 2^{\prime} \bullet \mathrm{m} 1\right)+\left(\mathrm{m} 8 \bullet \mathrm{~m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1\right)$ $=\left(m 8^{\prime} \bullet m 4 \bullet m 1^{\prime}\right)+\left(m 8 \bullet m 4^{\prime} \bullet m 1\right)$
$\mathrm{d} 31=\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2^{\prime} \cdot \mathrm{m} 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+$ $\left(m 8^{\prime} \bullet \mathrm{m} 4 \bullet \mathrm{~m} 2^{\prime} \bullet \mathrm{m} 1\right)+\left(\mathrm{m} 8^{\prime} \bullet \mathrm{m} 4 \cdot \mathrm{~m} 2 \cdot \mathrm{~m} 1\right)+$ $\left(m 8 \bullet m 4^{\prime} \bullet m 2^{\prime} \bullet m 1^{\prime}\right)+\left(m 8 \bullet m 4^{\prime} \bullet m 2 \bullet m 1^{\prime}\right)+$ $\left(m 8 \bullet m 4 \bullet m 22^{\bullet} \cdot \mathrm{m} 1^{\prime}\right)$

## Autun2012



## Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

CSE 311

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to " 1 "):

close switch (if $A$ is " 1 " or asserted) and turn on light bulb (Z)

open switch (if $A$ is " 0 " or unasserted) and turn off light bulb ( $Z$ )

$$
\mathrm{Z} \equiv \mathrm{~A}
$$

Autumn 2012
CSE 31

## Transistor networks

- Modern digital systems are designed in CMOS technology
- MOS stands for Metal-Oxide on Semiconductor
- C is for complementary because there are both normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches
- similar, though easier to work with than relays.

ntains at least two elements: $\mathrm{a}, \mathrm{b}$
2. closure: $\quad a+b$ is in $B$
. commutativity
$a+b=b+a$
$a+(b+c)=(a+b)+c$
$a+0=a$
$\begin{array}{ll}\text { 6. distributivity: } & a+(b \cdot c)=(a+b) \bullet(a+c)\end{array}$
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
4. associativity:
5. identity:
7. complementarity:
$a+a^{\prime}=1$


## Axioms and theorems of Boolean algebra

```
```

identity

```
```

identity
1. x+0=x 1D. x}11=
1. x+0=x 1D. x}11=
null
null
idempotency:
idempotency:
3. x+x=x 3D. }x\cdotx=
3. x+x=x 3D. }x\cdotx=
involution
involution
4. (x')'=x
4. (x')'=x
complementarity:
complementarity:
5. }x+\mp@subsup{x}{}{\prime}=1\quad\mathrm{ 5D. }x\cdot\mp@subsup{x}{}{\prime}=
5. }x+\mp@subsup{x}{}{\prime}=1\quad\mathrm{ 5D. }x\cdot\mp@subsup{x}{}{\prime}=
commutatively:
commutatively:
6. }X+Y=Y+X 6D. X\bulletY=Y\bullet
6. }X+Y=Y+X 6D. X\bulletY=Y\bullet
associativity:
associativity:
7. (X+Y)+Z=X+(Y+Z) 7D. (X Y) P = X (Y P)
7. (X+Y)+Z=X+(Y+Z) 7D. (X Y) P = X (Y P)
distributivity
distributivity
8. X}\bullet(Y+Z)=(X\bulletY)+(X\bulletZ
8. X}\bullet(Y+Z)=(X\bulletY)+(X\bulletZ
8D. X+(Y - Z)=(X+Y) \bullet(X+Z)
8D. X+(Y - Z)=(X+Y) \bullet(X+Z)
1. }\textrm{x}+0=\textrm{x}\mathrm{ 1D. }\textrm{x}\cdot1=\textrm{x
1. }\textrm{x}+0=\textrm{x}\mathrm{ 1D. }\textrm{x}\cdot1=\textrm{x
2D. }X\cdot0=

```
                            2D. }X\cdot0=
```

```
    2. }x+1=
```

    2. }x+1=
    7. }(\textrm{X}+\textrm{Y})+\textrm{Z}=\textrm{X}+(\textrm{Y}+\textrm{Z}
```
7. }(\textrm{X}+\textrm{Y})+\textrm{Z}=\textrm{X}+(\textrm{Y}+\textrm{Z}
```

Autumn 2012

```
uniting:
    9. X\bulletY+X\bulletY'=X 9D. (X+Y) \bullet(X+Y')=X
absorption:
    10. X+X P Y = X
    10. X+X \bulletY = X 
factoring:
    12. (X+Y) •(X'Z Z)=
    X}\cdotZ+\mp@subsup{X}{}{\prime}\cdot
consensus:
    13. (X•Y)+(Y•Z)+(X' •Z)=
        X}\cdotY+\mp@subsup{X}{}{\prime}\cdot
de Morgan's:
    14. (X+Y+\ldots..)}=\mp@subsup{X}{}{\prime}\bullet\mp@subsup{Y}{}{\prime}\bullet
                                    14D. (X \bullet Y \bullet ...)' = X' + Y' + ...
```

10D. $X \cdot(X+Y)=X$
11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

12D. $X \cdot Y+X^{\prime} \cdot Z=$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$
13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=$

13D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$
$(X+Y) \cdot\left(X^{\prime}+Z\right)$
de Morgan's:
14D. $(X \bullet Y \bullet . . .)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

## Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
- in general, there are $2^{* *}\left(2^{* *} n\right)$ functions of $n$ inputs



Autumn 2012 CSE 31
${ }^{14}$


## Axioms and theorems of Boolean algebra (cont.)



## A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '+A B^{\prime} C i n^{\prime}+A B C i n$ Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$

Autumn 2012
cSE 311

## Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
- e.g., de Morgan's:
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$ NOR is equivalent to AND with inputs complemented
$X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented



## Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify expressions
- e.g., full adder's carry-out function

Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n$
$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=$ (1) $B C$ Cin $+A B^{\prime} C i n+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n '+A B C i q$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n+A B C i n$
$=B C i n+A(1) C i n+A B C i n '+A B C i n$
$=B C i n+A C i n+A B(C i n '+C i n)$
$=B C i n+A C i n+A B(1)$
$=B C i n+A C i n+A B$
adding extra terms
Autumn 2012
creates new factoring
CSE 311

From Boolean expressions to logic gates

- NOT X $X \quad \sim X \quad X / X+\quad y$

| X | Y |
| :--- | :--- |
| 0 | 1 |
| 1 | 0 |

- AND $X \cdot Y X Y \quad X \wedge Y$

- OR $X+Y$
$X \vee Y$



