CSE 311 Foundations of Computing I

Autumn 2012
Lecture 2
More Propositional Logic
Application: Circuits
Propositional Equivalence

Administrative

- Course web: http://www.cs.washington.edu/311
 - Check it often: homework, lecture slides
- Office Hours: 2 × 7 = 14 hours; check the web
- Homework:
 - Paper turn-in (stapled) handed in at the start of class on due date (Wednesday); no online turn in.
 - Individual. OK to discuss with a couple of others but nothing recorded from discussion and write-up done much later
 - Homework 1 available (on web), due October 3

2

Administrative

- · Coursework and grading
 - Weekly written homeworkMidterm (November 2)15%
 - Final (December 10) ~ 35%
- A note about Extra Credit problems
 - Not required to get a 4.0
 - Recorded separately and grades calculated entirely without it
 - Fact that others do them can't lower your score
 - In total may raise grade by 0.1 (occasionally 0.2)
 - Each problem ends up worth less than required ones

RecallConnectives							
<i>p</i>			р Т Т F	q T F T	<i>p</i> ∧ <i>q</i> T F F		
			Αl	ND			
$p \mid q$	p∨ q		р	q	$p \oplus q$		
TT	Т		Т	Т	F		
TF	Т		Т	F	Т		
FT	Т		F	Τ	Т		
FF	F		F	F	F		
OR	OR			хс	R		4

ho
ightarrow q

- Implication
 - p implies q
 - whenever p is true q must be true
 - if p then q
 - -q if p
 - -p is sufficient for q
 - -p only if q

"If pigs can whistle then horses can fly"

"If you behave then I'll buy you ice cream"

What if you don't behave?

Converse, Contrapositive, Inverse

• Implication: $p \rightarrow q$

• Converse: $q \rightarrow p$

• Contrapositive: $\neg q \rightarrow \neg p$

• Inverse: $\neg p \rightarrow \neg q$

· Are these the same?

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

р	q	$p \leftrightarrow q$

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - q: you can ride the roller coaster
 - r. you are under 4 feet tall
 - s: you are older than 16

Digital Circuits

- · Computing with logic
 - T corresponds to 1 or "high" voltage
 - F corresponds to 0 or "low" voltage
- Gates
 - Take inputs and produce outputs = Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 - · Only symmetric ones (order of inputs irrelevant)

Gates

AND connective

P q PAq

T T T T

F F F F

F F F

P Q PAQ

Q Out

1 1 1 1

1 0 0

0 1 0

0 0 0

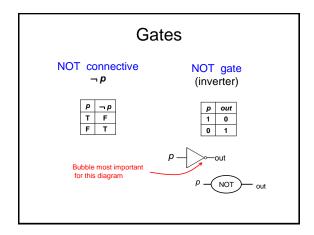
P Q AND out

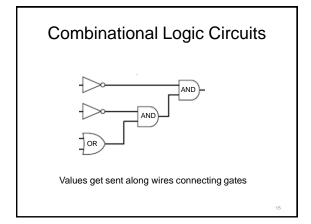
P AND out

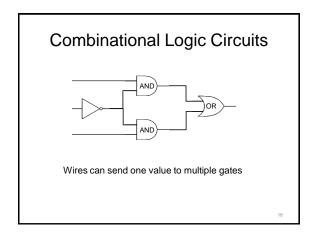
P AND out

P Ou









Logical equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

$$p \vee \neg p$$

 $p \oplus p$

 $(p \rightarrow q) \land p$

 $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology
 - -i.e. p and q have the same truth table
- The notation *p* ≡ *q* denotes *p* and *q* are logically equivalent
- Example: $p \equiv \neg \neg p$

р	¬ p	$\neg \neg p$	<i>p</i> ↔ ¬ ¬ <i>p</i>

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

What are the negations of:

- The Yankees and the Phillies will play in the World Series
- It will rain today or it will snow on New Year's Day

De Morgan's Laws

Example: $\neg (p \land q) \equiv (\neg p \lor \neg q)$

р	q	¬ p	¬ q	¬ p ∨ ¬q	p ^ q	¬(p ∧ q)	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т						
Т	F						
F	Т						
F	F						

l

Law of Implication

Example: $(p \rightarrow q) \equiv (\neg p \lor q)$

p	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Computing equivalence

- Describe an algorithm for computing if two logical expressions/circuits are equivalent
- · What is the run time of the algorithm?

22

Understanding connectives

- · Reflect basic rules of reasoning and logic
- · Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- · Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- · Associative
- Distributive
- Absorption
- Negation

24

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \lor q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \lor q \equiv \neg p \rightarrow q$
- $p \land q \equiv \neg (p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Logical Proofs

- · To show P is equivalent to Q
 - Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
 - Apply a series of logical equivalences to subexpressions to convert P to T

26

Show $(p \land q) \rightarrow (p \lor q)$ is a tautology

27