CSE 311 Foundations of Computing I

Autumn 2012

Lecture 1
Propositional Logic

About the course

- From the CSE catalog:
- CSE 311 Foundations of Computing I (4)

Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.

- What I think the course is about:
- Foundational structures for the practice of computer science and engineering

Why this material is important

- Language and formalism for expressing ideas in computing
- Fundamental tasks in computing
- Translating imprecise specification into a working system
- Getting the details right

Topic List

- Logic/boolean algebra: hardware design, testing, artificial intelligence, software engineering
- Mathematical reasoning/induction: algorithm design, programming languages
- Number theory: cryptography, security, algorithm design
- Relations/relational algebra: databases
- Finite state machines: Hardware and software design, automatic verification
- Turing machines: Halting problem

Propositions

- A statement that has a truth value
- Which of the following are propositions?
- The Washington State flag is red
- It snowed in Whistler, BC on January 4, 2012
- Ron Paul is the 2012 republican nominee for president
- Space aliens landed in Roswell, New Mexico
- Turn your homework in on Wednesday
- Why are we taking this class?
- If n is an integer greater than two, then the equation $a^{n}+b^{n}=c^{n}$ has no solutions in non-zero integers a, b, and c .
Every even integer greater than two can be written as the sum of two primes
This statement is false
- Propositional variables: p, q, r, s, .
- Truth values: \mathbf{T} for true, \mathbf{F} for false

Compound Propositions

- Negation (not) $\quad \mathrm{p}$
- Conjunction (and) $p \wedge q$
- Disjunction (or) $\quad p \vee q$
- Exclusive or $\quad p \oplus q$
- Implication $\quad p \rightarrow q$
- Biconditional $\quad p \leftrightarrow q$

Understanding complex propositions

- Either Harry finds the locket and Ron breaks his wand or Fred will not open a joke shop

Understanding complex propositions with a truth table

Aside: Number of binary operators

- How many different binary operators are there on atomic propositions?

$$
p \rightarrow q
$$

- Implication

- p implies q
- whenever p is true q must be true
- if p then q
$-q$ if p
$-p$ is sufficient for q
- p only if q

If pigs can whistle then horses can fly

Converse, Contrapositive,

 Inverse- Implication: $p \rightarrow q$
- Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$
- Inverse: $\neg p \rightarrow \neg q$
- Are these the same?

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

[^0]
[^0]: ## English and Logic

 - You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 $-q$: you can ride the roller coaster
 - r. you are under 4 feet tall
 - s : you are older than 16

