CSE311 Quiz Section: October 4, 2012

1. Carry look-ahead adder.
2. Find the sum-of-products expansion of the Boolean function $F(w, x, y, z)$ that has the value 1 if and only if an odd number of w, x, y, z have value 1. Standard methodology for sum of products gives us:
$F(w, x, y, z)=w^{\prime} x y z+w x^{\prime} y z+w x y^{\prime} z+w x y z^{\prime}+w^{\prime} x^{\prime} y^{\prime} z+w^{\prime} x^{\prime} y z^{\prime}+w x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x y^{\prime} z^{\prime}$
3. Construct circuits from inverters, AND gates, and OR gates to produce these outputs.Can you simplify any of them? (Note: A bar above an expression means its negation)
(a) $\bar{x}+y$
(b) $x y z+\bar{x} y$
$x y z+\bar{x} y=y(x z+\bar{x})=y((x+\bar{x})(z+\bar{x}))=y((1)(z+\bar{x}))=y(\bar{x}+z)$
where in the second step we used the distributive law.
(c) $(\overline{x+y})(\overline{y+z})(\overline{x+z})$

Let's calculate the negation of this statement. Then by De Morgan's law:

$$
\begin{gathered}
\overline{(\overline{x+y})(\overline{y+z})(\overline{x+z})}=\overline{(\overline{x+y})}+\overline{(\overline{y+z})}+\overline{(\overline{x+z})}= \\
x+y+y+z+x+z=x+y+z
\end{gathered}
$$

Therefore the initial expression is equal to:

$$
\overline{x+y+z}
$$

This gives a circuit with 3 gates ($2 \mathrm{OR}, 1 \mathrm{NOT}$). If we approached this by just applying De Morgan's law, we would get:

$$
\bar{x} \bar{y} \bar{z}
$$

and we would need 5 gates for the circuit (3NOT, 2 AND).
4. Translate English to logical expressions with nested quantifiers.

Both editions: 1.5: 9 The solution is in the book.

