CSE 311: PRACTICE WITH PROOFS

Definitions

The following are definitions that will be useful in your proofs:
Def 1.1: Let $a, b \in \mathbb{Z}$. Then a divides \mathbf{b}, written $a \mid b$, if $\exists c \in \mathbb{Z}$ such that $b=a c$.
Def 1.2: We say an integer x is even if $x=2 k$ for some $k \in \mathbb{Z}$. An integer y is odd if $y=2 j+1$ for some $j \in \mathbb{Z}$.

Def 1.3: Let $a, b \in \mathbb{Z}$, and $n \in \mathbb{N}$. Then $a \equiv b(\bmod n) \leftrightarrow n \mid(a-b)$.
Def 1.4: Let A and B be sets. Then $A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)$.

Practice Proofs

See if you can apply some of the tips located in the "Proof-Writing Tips" worksheet in the following problems:

1. Let $A=\{x \in \mathbb{Z}: 18 \mid x\}$ and $B=\{x \in \mathbb{Z}: 6 \mid x\}$. Prove that $A \subseteq B$.
2. Show that if $x^{2}-6 x+5$ is even for $x \in \mathbb{Z}$, then x is odd.
3. Prove that if $x \equiv 14(\bmod 25)$, then $x \equiv 4(\bmod 5)$.
4. Suppose $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Prove $A \subseteq C$.
