CSE 311: PRACTICE WITH PROOFS

Definitions

The following are definitions that will be useful in your proofs:

Def 1.1: Let $a, b \in \mathbb{Z}$. Then **a divides b**, written a|b, if $\exists c \in \mathbb{Z}$ such that b = ac.

Def 1.2: We say an integer x is **even** if x = 2k for some $k \in \mathbb{Z}$. An integer y is **odd** if y = 2j + 1 for some $j \in \mathbb{Z}$.

Def 1.3: Let $a, b \in \mathbb{Z}$, and $n \in \mathbb{N}$. Then $a \equiv b \pmod{n} \leftrightarrow n | (a - b)$.

Def 1.4: Let A and B be sets. Then $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$.

Practice Proofs

See if you can apply some of the tips located in the "Proof-Writing Tips" worksheet in the following problems:

1

- 1. Let $A = \{x \in \mathbb{Z} : 18 | x\}$ and $B = \{x \in \mathbb{Z} : 6 | x\}$. Prove that $A \subseteq B$.
- 2. Show that if $x^2 6x + 5$ is even for $x \in \mathbb{Z}$, then x is odd.
- 3. Prove that if $x \equiv 14 \pmod{25}$, then $x \equiv 4 \pmod{5}$.
- **4.** Suppose $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Prove $A \subseteq C$.